相关习题
 0  227707  227715  227721  227725  227731  227733  227737  227743  227745  227751  227757  227761  227763  227767  227773  227775  227781  227785  227787  227791  227793  227797  227799  227801  227802  227803  227805  227806  227807  227809  227811  227815  227817  227821  227823  227827  227833  227835  227841  227845  227847  227851  227857  227863  227865  227871  227875  227877  227883  227887  227893  227901  266669 

科目: 来源: 题型:解答题

11.已知$\overrightarrow{a}$=(sinx,(m-$\frac{3}{8}$)sinx),$\overrightarrow{b}$=(sin3x,8sinx)且f(x)=$\overrightarrow{a}•\overrightarrow{b}$,求函数y=f(x)的最大值g(m),并解不等式g(m)<5-|m-1|

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知(1+2x)n=a0+a1(x-$\frac{1}{2}$)+a2(x-$\frac{1}{2}$)2+…+an(x-$\frac{1}{2}$)n(其中n∈N*),若a1+a2+…+an=240,则x3的系数是(  )
A.16B.32C.31D.36

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知△ABC中,内角A,B,C的对边分别为a,b,c.
(1)若$\frac{a}{cosA}$=$\frac{b}{cosB}$,且sin2A(2-cosC)=cos2B+$\frac{1}{2}$,求角C的大小;
(2)若△ABC为锐角三角形,且A=$\frac{π}{4}$,a=2,求△ABC面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知函数f(x)=asinωx+bcosωx(ω>0)的图象如图所示,则f(0)+f(1)+f(2)+f(3)+…+f(2016)=
0.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(2,0)与$\overrightarrow{b}$=(1,-2),求|2$\overrightarrow{a}$-$\overrightarrow{b}$|

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(1,-2)与$\overrightarrow{b}$=(3,4),求($\overrightarrow{a}+\overrightarrow{b}$)•($\overrightarrow{a}-\overrightarrow{b}$).

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=-x1nx的图象在点(1,f(1))处的切线的倾斜角为(  )
A.-1B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.(理科)已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}|f({x}_{i})-f({x}_{i-1})|$≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}{a}_{i}={a}_{1}+{a}_{2}+…+{a}_{n}$;
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2}$,0]上是“绝对差有界函数”;
(2)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x},0<x≤1}\\{0;x=0}\end{array}\right.$不是[0,1]上的“绝对差有界函数”;
(3)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)均为“绝对差有界函数”,并判断g(x)=2016sin(2016x)是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知在△ABC中,角A、B、C所对的边为a、b、c,若向量$\overrightarrow{m}$=(cosB,sinC),$\overrightarrow{n}$=(cosC,-sinB),且$\overrightarrow{m}•\overrightarrow{n}$=-$\frac{\sqrt{2}}{2}$.
(1)求∠A的大小;
(2)若边a=$\sqrt{2}$且cosB=$\frac{3}{5}$,求△ABC的边c的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

2.若$\overrightarrow{a}$=(1,$\sqrt{3}$),$\overrightarrow{b}$=(2$\sqrt{3}$,2),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案