相关习题
 0  227713  227721  227727  227731  227737  227739  227743  227749  227751  227757  227763  227767  227769  227773  227779  227781  227787  227791  227793  227797  227799  227803  227805  227807  227808  227809  227811  227812  227813  227815  227817  227821  227823  227827  227829  227833  227839  227841  227847  227851  227853  227857  227863  227869  227871  227877  227881  227883  227889  227893  227899  227907  266669 

科目: 来源: 题型:解答题

14.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1是线段QF2的中点,若过A,Q,F2三点的圆恰好与直线l:x-$\sqrt{3}$y-3=0相切.
(1)求椭圆C的方程;
(2)过定点M(0,2)的直线l1与椭圆C交于G,H两点,且|MG|>|MH|.若实数λ满足$\overrightarrow{MG}=λ\overrightarrow{MH}$,求λ+$\frac{1}{λ}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且F1恰是QF2的中点.若过A、Q、F2三点的圆恰好与直线l:x-$\sqrt{3}$y-3=0相切.
(1)求椭圆C的方程;
(2)设直线l1:y=x+2与椭圆C交于G、H两点.在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在直角坐标系xOy中,椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2.F2也是抛物线C2:y2=4x的焦点,点M为C1与C2在第一象限的交点,且|MF2|=$\frac{5}{3}$.
(Ⅰ)求C1的方程;
(Ⅱ)平面上的点N满足四边形MF1NF2是平行四边形,直线l∥MN,且与C1交于A、B两点,若OA⊥OB,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

11.在△ABC外,分别以AC、BC、AB为边作正方形,得到三个正方形的面积依次为S1、S2、S3,若S1+S2=S3=8,则△ABC的面积最大值是(  )
A.2B.$\sqrt{2}$C.4D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;\;({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1、F2,点$P(2,\sqrt{3})$,且F2在线段PF1的中垂线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点A(2,0)且斜率为k的直线l与椭圆C交于D、E两点,点F2为椭圆的右焦点,求证:直线DF2与直线EF2的斜率之和为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦点F1,F2,过右焦点F2的直线l与C相交于P、Q两点,若△PQF1的周长为短轴长的2$\sqrt{3}$倍.
(Ⅰ)求C的离心率;
(Ⅱ)设l的斜率为1,在C上是否存在一点M,使得$\overrightarrow{OM}=2\overrightarrow{OP}+\overrightarrow{OQ}$?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆M:$\frac{{x}^{2}}{4{b}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)上一点与椭圆的两个焦点构成的三角形周长为4+2$\sqrt{3}$.
(1)求椭圆M的方程;
(2)设不过原点O的直线与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知A、B分别是椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右顶点,离心率为$\frac{1}{2}$,右焦点与抛物线y2=4x的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.

查看答案和解析>>

科目: 来源: 题型:选择题

6.定义在区间(0,+∞)上的函数f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)为f(x)的导数,则(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,A,B,C,D四点共圆,BC,AD的延长线交于点E,点F在BA的延长线上,
(1)若$\frac{EC}{EB}=\frac{1}{4},\frac{ED}{EA}=\frac{1}{2},求\frac{DC}{AB}$的值;
(2)若EF2=FA•FB,证明:EF∥CD.

查看答案和解析>>

同步练习册答案