相关习题
 0  227735  227743  227749  227753  227759  227761  227765  227771  227773  227779  227785  227789  227791  227795  227801  227803  227809  227813  227815  227819  227821  227825  227827  227829  227830  227831  227833  227834  227835  227837  227839  227843  227845  227849  227851  227855  227861  227863  227869  227873  227875  227879  227885  227891  227893  227899  227903  227905  227911  227915  227921  227929  266669 

科目: 来源: 题型:解答题

5.已知函数f(x)=ex-ax(e为自然对数的底数,a为常数)在点(0,1)处的切线斜率为-1.
(Ⅰ)求a的值及函数f(x)的极值;
(Ⅱ)证明:当x>0时,x2<ex
(Ⅲ)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞),恒有x2<cex

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知直线l1、l2与曲线W:mx2+ny2=1(m>0,n>0)分别相交于点A、B和C、D,我们将四边形ABCD称为曲线W的内接四边形.
(1)若直线l1:y=x+a和l2:y=x+b将单位圆W:x2+y2=1分成长度相等的四段弧,求a2+b2的值;
(2)若直线${l_1}:y=2x-\sqrt{10},{l_2}:y=2x+\sqrt{10}$与圆W:x2+y2=4分别交于点A、B和C、D,求证:四边形ABCD为正方形;
(3)求证:椭圆$W:\frac{x^2}{2}+{y^2}=1$的内接正方形有且只有一个,并求该内接正方形的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}$ax2-(a2+1)x+alnx.
(Ⅰ)若函数f(x)在[$\frac{1}{e}$,e]上单调递减,求实数a的取值范围;
(Ⅱ)当a$∈(0,\frac{3}{5}]$时,求f(x)在[1,2]上的最大值和最小值.(注意:ln2<0.7)

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在Rt△ACD中,AH⊥CD,H为垂足,CD=4,AD=2$\sqrt{3}$,∠CAD=90°,以CD为轴,将△ACD按逆时针方向旋转90°到△BCD位置,E为AD中点;
(Ⅰ)证明:AB⊥CD.
(Ⅱ)求二面角B-CE-D的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知点P1(a1,b1),P2(a2,b2),…Pn(an,bn),(n为正整数)都在函数y=($\frac{1}{2}$)x的图象上.
(1)若数列{an}是等差数列,证明:数列{bn}是等比数列;
(2)设an=n,(n∈N+),过点Pn,Pn+1的直线与两坐标轴所围成的三角形面积为cn,试求最小的实数t,使cn≤t对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入3k-1个3,得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试探究2016是否是数列{Sn}中的某一项,写出你探究得到的结论并给出证明.

查看答案和解析>>

科目: 来源: 题型:选择题

9.等差数列{an}中,已知S12=72,则a1+a12=(  )
A.12B.10C.8D.6

查看答案和解析>>

科目: 来源: 题型:选择题

8.若等差数列{an}共有2n+1(n∈N)项,S,S分别代表下标为奇数和偶数的数列和,已知S=40,S=35,则数列的项数为(  )
A.10B.15C.35D.75

查看答案和解析>>

科目: 来源: 题型:填空题

7.设a=($\frac{3}{4}$)0.5,b=($\frac{4}{3}$)0.4,c=log${\;}_{\frac{3}{4}}$(log34),则a,b,c相互之间的大小关系为c<a<b.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知角β的顶点为坐标原点O,始边在x轴的正半轴上,终边经过点P(-4,3)
(1)求sinβ与sin2β的值
(2)已知函数f(x)=3cos(x-$\frac{π}{4}$),求函数f(x)的最大值和最小正周期,并求f(β)的值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.在△ABC中,高AD把BC分为长2cm和3cm的两段,∠A=45°,则S△ABC=15.

查看答案和解析>>

同步练习册答案