相关习题
 0  227815  227823  227829  227833  227839  227841  227845  227851  227853  227859  227865  227869  227871  227875  227881  227883  227889  227893  227895  227899  227901  227905  227907  227909  227910  227911  227913  227914  227915  227917  227919  227923  227925  227929  227931  227935  227941  227943  227949  227953  227955  227959  227965  227971  227973  227979  227983  227985  227991  227995  228001  228009  266669 

科目: 来源: 题型:选择题

11.已知F1、F2是椭圆的两个焦点,若存在满足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0的点M在椭圆外部,则椭圆离心率的取值范围是(  )
A.(0,1)B.($\frac{1}{2}$,1)C.($\frac{\sqrt{2}}{2}$,1)D.[$\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知f(x)是定义在[a,b]上的函数,如果存在常数M>0,对区间[a,b]的任意划分:a=x0<x1<…<xn-1<xn=b,和式$\sum_{i=1}^{n}$|f(xi)-f(xi-1)|≤M恒成立,则称f(x)为[a,b]上的“绝对差有界函数”,注:$\sum_{i=1}^{n}$ai=a1+a2+…+an
(1)证明函数f(x)=sinx+cosx在[-$\frac{π}{2},0$]上是“绝对差有界函数”;
(2)记集合A={f(x)|存在常数k>0,对任意的x1,x2∈[a,b],有|f(x1)-f(x2)|≤k|x1-x2|成立},证明集合A中的任意函数f(x)均为“绝对差有届函数”;当[a,b]=[1,2]时,判断g(x)=$\sqrt{x}$是否在集合A中,如果在,请证明并求k的最小值,如果不在,请说明理由;
(3)证明函数f(x)=$\left\{\begin{array}{l}{xcos\frac{π}{2x}}&{0<x≤1}\\{0}&{x=0}\end{array}\right.$不是[0,1]上的“绝对差有界函数.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某公司对新研发的一种产品进行试销,得到如表数据及散点图:
利润x(元/kg)102030405060
年销量y(kg)115064342426216586
Z=2ln(y)14.112.912.111.110.28.9
其中z=2ln(y),$\overline x=35,\;\;\overline y=455,\;\;\;\overline z=11.55$$\sum_{i=1}^{i=6}{({x_i}}-\overline x{)^2}=1750$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({y_i}-\overline y)=-34580$,$\sum_{i=1}^{i=6}{({x_i}}-\overline x)•({z_i}-\overline z)=-175.5$,${\sum_{i=1}^{i=6}{({{y_i}-\overline y})}^2}=776840$,$\sum_{i=1}^{i=6}{({{y_i}-\overline y})}•({{z_i}-\overline z})=3465.2$
(Ⅰ)根据散点图判断,y与x、z与x哪一对具有较强线性相关性?(给出判断即可,不必说明理由)
(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字)
(Ⅲ)利润为多少元/kg时,年利润的预报值最大?
附:对于一组数据(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回归直线$\overline{y}$=$\stackrel{∧}{a}$+
$\stackrel{∧}{b}$$\overline{x}$的斜率和截距的最小二乘估计分别为:$\widehatb=\frac{{\sum_{i=1}^{i=n}{({{x_i}-\overline x})•({{y_i}-\overline y})}}}{{\sum_{i=1}^{i=n}{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^{i=n}{{x_i}•{y_i}-n•\overline x\overline{•y}}}}{{\sum_{i=1}^{i=n}{{x_i}^2-n•{{\overline x}^2}}}}$,$\widehata=\overline y-\widehatb•\overline x$

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆E:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,过F作互相垂直的两条直线分别与E相交于A,C和B,D四点.
(1)四边形ABCD能否成为平行四边形,请说明理由.
(2)求|AC|+|BD|的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.C${\;}_{3}^{0}$+C${\;}_{4}^{1}$+C${\;}_{5}^{2}$+…+C${\;}_{21}^{18}$的值等于7315.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}x,|x|≤1\\ sin\frac{π}{2}x,|x|>1\end{array}\right.$则下列结论正确的是(  )
A.函数f(x)在$[-\frac{π}{2},\frac{π}{2}]$上单调递增B.函数f(x)的值域是[-1,1]
C.?x0∈R,f(-x0)≠-f(x0D.?x∈R,f(-x)≠f(x)

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点A(1,$\frac{\sqrt{3}}{2}$)在椭圆C上,|AF1|+|AF2|=4,则椭圆C的离心率是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{4}$C.$\frac{2}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知正项数列{an},前n项和为Sn,且有$\sqrt{{S}_{n}}$=λan+c.
(1)求证:λc≤$\frac{1}{4}$;
(2)若λ=1,c=0,求证:Sn≥($\frac{n+1}{2}$)2
(3)若2a2=a1+a3,求证:{an}为等差数列.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知数列{an}是各项均为正数的等比数列,a3=4,{an}的前3项和为7.
(1)求数列{an}的通项公式;
(2)若a1b1+a2b2+…+anbn=(2n-3)2n+3,设数列{bn}的前n项和为Sn.求证:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$≤2-$\frac{1}{n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.正项数列{an}的前n项和为Sn,对任意n∈N+都有a31+a32+a33+…+a3n=S2n+2Sn
(1)求a1,a2
(2)求an及数列{3${\;}^{{a}_{n}}$-26an}的前n项和Tn的最小值;
(3)设bn=3n+(-1)n-1•t•2${\;}^{{a}_{n}}$,对任意n∈N+都有bn+1>bn恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案