相关习题
 0  227845  227853  227859  227863  227869  227871  227875  227881  227883  227889  227895  227899  227901  227905  227911  227913  227919  227923  227925  227929  227931  227935  227937  227939  227940  227941  227943  227944  227945  227947  227949  227953  227955  227959  227961  227965  227971  227973  227979  227983  227985  227989  227995  228001  228003  228009  228013  228015  228021  228025  228031  228039  266669 

科目: 来源: 题型:填空题

8.已知cos($\frac{π}{2}$-θ)=$\frac{4}{5}$且tanθ>0,则cos(π+θ)=-$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|,0<x<3}\\{sin(\frac{π}{2}x-π),3≤x≤7}\end{array}\right.$,若存在实数a,b,c,d,满足f(a)=f(b)=f(c)=f(d),其中0<a<b<c<d,则a+b+c+d的取值范围是(12,$\frac{40}{3}$).

查看答案和解析>>

科目: 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,数列{Sn}的前n项和为Tn,且2Tn=4Sn-(n2+n),n∈N*
(1)证明:数列{an+1}为等比数列;
(2)设bn=$\frac{n+1}{{a}_{n}+1}$,比较b1+b2+…+bn与3的大小.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知不等式$\sqrt{(x-a)^{2}+4(lnx-a-\frac{1}{2})^{2}}$≥$\frac{3\sqrt{5}}{5}$恒成立,则实数a的取值为(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知$\frac{1+2+3+…+n}{1+3+5+…+(2n-1)}$=$\frac{10}{19}$.则n=19.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2{x}^{2}}{x+1},x∈(\frac{1}{2},1]}\\{-\frac{1}{3}x+\frac{1}{6},x∈[0,\frac{1}{2}]}\end{array}\right.$,g(x)=$\frac{1}{2}$ax2-2a+2(a>0),若存在x1,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是$\frac{1}{2}$≤a≤$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.将函数f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1的图象向左平移$\frac{π}{8}$个单位长度,再向下平移1个单位长度后,得到函数g(x)的图象,则函数g(x)具有的性质①③⑤.(填入所有正确的序号)
①最大值为$\sqrt{2}$,图象关于直线x=$\frac{3π}{4}$对称;②在(-$\frac{π}{2}$,0)上单调递增,且为偶函数;③最小正周期为π;④图象关于点($\frac{π}{4}$,0)对称,⑤在(0,$\frac{π}{4}$)上单调递增,且为奇函数.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(3,2),$\overrightarrow{b}$=(-1,2),$\overrightarrow{c}$=(4,1).
(1)用$\overrightarrow{b}$和$\overrightarrow{c}$表示$\overrightarrow{a}$;
(2)若($\overrightarrow{d}$-$\overrightarrow{c}$)∥($\overrightarrow{a}$+$\overrightarrow{b}$),且|$\overrightarrow{d}$-$\overrightarrow{c}$|=$\sqrt{5}$,求$\overrightarrow{d}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若直线y=2x+b与曲线y=$\sqrt{4-{x}^{2}}$有且仅有一个公共点,则b的取值范围为{b|-4≤b<4,或b=$2\sqrt{5}$}.

查看答案和解析>>

科目: 来源: 题型:填空题

19.若直线2ax+by-1=0(a>-1,b>0)经过曲线y=cosπx+1(0<x<1)的对称中心,则$\frac{1}{a+1}$+$\frac{2}{b}$的最小值为$\frac{3+2\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案