相关习题
 0  227852  227860  227866  227870  227876  227878  227882  227888  227890  227896  227902  227906  227908  227912  227918  227920  227926  227930  227932  227936  227938  227942  227944  227946  227947  227948  227950  227951  227952  227954  227956  227960  227962  227966  227968  227972  227978  227980  227986  227990  227992  227996  228002  228008  228010  228016  228020  228022  228028  228032  228038  228046  266669 

科目: 来源: 题型:选择题

18.函数y=$\sqrt{3}$sin(2x-$\frac{π}{6}$)+2sin2(x-$\frac{π}{12}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知不等式x2-bx+c>0的解集为{x|x>1或x<-1}
(1)求b和c;
(2)求解不等式ax2-(b+1-ca)x-c≤0.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=2cosπx•cos2$\frac{φ}{2}$+sin[(x+1)π]•sinφ-cosπx(0<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求φ的值及图中x0的值:
(2)将函数f(x)的图象上的各点向左平移$\frac{1}{6}$个单位长度.再将所得图象上各点的横坐标不变.纵坐标伸长到原来的$\sqrt{3}$倍.得到函数g(x)的图象.求函数g(x)在区间[-$\frac{1}{2}$,$\frac{1}{3}$]上的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知等差数列{an}的前n项和为Sn,且a2=3,a1+a3+a5=15.
(1)求an及Sn
(2)设bn=$\frac{1}{{a}_{n+1}^{2}-1}$(n∈N*),设数列{bn}的前n项和Tn,证明:Tn<$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=sin(2ωx+$\frac{π}{4}$)(x∈R,ω>0)的最小正周期为π.
(1)求f(x)在[0,$\frac{π}{2}$]上的值域,并求出取最小值时的x值;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目: 来源: 题型:选择题

13.将函数y=sin(x-$\frac{π}{6}$)的图象上所有点的横坐标缩短到原来的 $\frac{1}{2}$倍(纵坐标不变),再将所得函数的图象向左平移$\frac{π}{6}$个单位,最后所得到的图象对应的解析式是(  )
A.y=sin$\frac{1}{2}$xB.y=sin($\frac{1}{2}$x-$\frac{π}{6}$)C.y=sin2xD.y=sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,角A,B,C的对边分别为a,b,c,且满足a2=bc+b2,C=75°,则B为(  )
A.35°B.45°C.65°D.25°

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知△ABC三个内角A,B,C所对边分别为a,b,c,且csinA+acos(C+$\frac{π}{6}$)=0.
(1)求角C;
(2)若c=$\sqrt{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知f(x)=x3,g(x)=-x2+x-$\frac{2}{9}$a,若存在x0∈[-1,$\frac{a}{3}$](a>0),使得f(x0)<g(x0),则正数a的取值范围是$(0,\frac{\sqrt{21}-3}{2})$.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知$\overrightarrow{a}$=(m,cos$\frac{x}{2}$),$\overrightarrow{b}$=(sin$\frac{x}{2}$,n),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,函数f(x)的图象过点($\frac{π}{2}$,4)和点(-$\frac{π}{2}$,0)
(1)求函数f(x)的解析式;
(2)用“五点法”作出函数f(x)在一个周期内的图象.

查看答案和解析>>

同步练习册答案