相关习题
 0  227911  227919  227925  227929  227935  227937  227941  227947  227949  227955  227961  227965  227967  227971  227977  227979  227985  227989  227991  227995  227997  228001  228003  228005  228006  228007  228009  228010  228011  228013  228015  228019  228021  228025  228027  228031  228037  228039  228045  228049  228051  228055  228061  228067  228069  228075  228079  228081  228087  228091  228097  228105  266669 

科目: 来源: 题型:选择题

1.若双曲线$E:\frac{x^2}{9}-\frac{y^2}{16}=1$的左、右焦点分别为F1、F2,点P在双曲线E上,且|PF1|=5,则|PF2|等于(  )
A.1或11B.1C.11D.13

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,ABCD-A1B1C1D1为正方体.
(1)求证:B1D1∥平面BC1D;
(2)求异面直线B1D1与BC1所成角的大小;
(3)求证BD⊥平面ACC1

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)是定义在R上的偶函数,且x≥0时,$f(x)={({\frac{1}{2}})^x}$
(1)求函数f(x)的值域A;
(2)解不等式f(lgx)>f(-1);
(3)设函数$g(x)=\sqrt{-{x^2}+({a-1})x+a}$的定义域为集合B,若A∩B≠∅,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在四棱锥E-ABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(Ⅰ)求证:DE∥平面ACF;
(Ⅱ)求证:BD⊥AE.

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1,点E、F、G分别是DD1、AB、CC1的中点,则异面直线A1E与GF所成的角的余弦值是0.

查看答案和解析>>

科目: 来源: 题型:选择题

16.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则 x=1”的逆否命题为“若x≠1,则 x2-3x+2≠0
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.若 p∧q为假命题,则p,q均为假命题
D.对于命题 p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0

查看答案和解析>>

科目: 来源: 题型:填空题

15.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令${a_n}=\frac{x_n}{n^2}$,则a1+a2+…+a2015的值为$\frac{2015}{2016}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.定义在D上的函数f(x),如果满足:对任意的x∈D,都存在常数M≥0,使|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为f(x)的一个上界.已知$f(x)=lo{g_{\frac{1}{2}}}\frac{1-ax}{x-1}$
(1)若函数f(x)为奇函数,求实数a的值;
(2)在(1)的条件下,求函数f(x)在区间$[{\frac{5}{3},3}]$上的所有上界构成的集合.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,在四棱锥P-ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB中点,F是DC上的点,且$DF=\frac{1}{2}AB,PH$为△PAD中AD边上的高.
(Ⅰ)证明:PH⊥平面ABCD;
(Ⅱ)若PH=1,AD=2,FC=1,求三棱锥E-BCF的体积;
(Ⅲ)证明:EF⊥平面PAB.

查看答案和解析>>

科目: 来源: 题型:填空题

12.给出下列命题:
①如果α⊥β,那么α内所有直线都垂直于β;
②如果α⊥γ,β⊥γ,α∩β=l,那么l⊥γ
③若α∥β,β⊥γ,则α⊥γ
④若α⊥β,α∩β=a,a⊥b,则b⊥α.
其中正确命题的序号是②③.

查看答案和解析>>

同步练习册答案