相关习题
 0  227917  227925  227931  227935  227941  227943  227947  227953  227955  227961  227967  227971  227973  227977  227983  227985  227991  227995  227997  228001  228003  228007  228009  228011  228012  228013  228015  228016  228017  228019  228021  228025  228027  228031  228033  228037  228043  228045  228051  228055  228057  228061  228067  228073  228075  228081  228085  228087  228093  228097  228103  228111  266669 

科目: 来源: 题型:填空题

1.已知Sn是数列{an}的前n项和,a1=2且4Sn=an•an+1,(n∈N*),数列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n{b}_{n}}{(n+1)-{b}_{n}}$(n∈N*),设cn=$\frac{{a}_{n}}{{2}^{\frac{1}{3{b}_{n}}+\frac{2}{3}}}$,则{cn}的前n项和Tn=2-$\frac{2+n}{{2}^{n}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知非零数列{an}满足:a1=$\frac{1}{2}$,a2=$\frac{1}{4}$,${a}_{n}^{2}$=an-1an+1(n≥2,n∈N*).设Sn为数列{bn}的前n项和,其中b1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1
(1)求数列{an}和{bn}的通项公式;
(2)若对任意的n∈N+.使得不等式:$\frac{{b}_{1}+1}{{a}_{1}}$+$\frac{{b}_{2}+1}{{a}_{2}}$+…+$\frac{{b}_{n}+1}{{a}_{n}}$≥$\frac{m}{{a}_{n}}$恒成立,求实教m的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.某一等差数列的a1<0,a100≥74,a200<200,且在区间($\frac{1}{2}$,5)中的项比[20,$\frac{49}{2}$]中的项少2,则数列{an}的通项公式为an=$\frac{3}{4}$n-1.

查看答案和解析>>

科目: 来源: 题型:选择题

18.若a>b,则下列不等式成立的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.$\frac{1}{a}<\frac{1}{b}$C.a3>b3D.a2>b2

查看答案和解析>>

科目: 来源: 题型:填空题

17.已知数列{an}的通项公式为an=n,{bn}的通项公式为bn=2n,cn的值为{an}的前n项中含有{bn}中元素的个数,记Sn为数列{cn]的前n项和,则下列说法中正确的为①②(填上所有正确结论的序号).
①当n=2k(k=1,2,3…)时,cn=k;
②当n=2k+1-1(k=1,2,3…)时,cn=k;
③当n=2k+1-1(k=1,2,3…)时,Sn=(k-1)•2k+1+2.

查看答案和解析>>

科目: 来源: 题型:填空题

16.在△ABC中,∠B=$\frac{π}{4}$,∠C=$\frac{5π}{12}$,AC=2$\sqrt{6}$,AC的中点为D,若长度为3的线段PQ(P在Q的左侧)在直线BC上滑动,则AP+DQ的最小值为$\frac{3\sqrt{10}+\sqrt{30}}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知$f(x)=\left\{\begin{array}{l}|{{{log}_3}x}|,0<x≤3\\ \frac{1}{3}{x^2}-\frac{10}{3}x+8,x>3\end{array}\right.,a,b,c,d$是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd的取值范围是(21,24).

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知数列{an}和{bn}满足:a1=2,$n{a_{n+1}}=(n+1){a_n}+n(n+1),n∈{N^*}$,且对一切n∈N*,均有${b_1}{b_2}…{b_n}={(\sqrt{2})^{a_n}}$.
(1)求证:数列$\{\frac{a_n}{n}\}$为等差数列,并求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn
(3)设${c_n}=\frac{{{a_n}-{b_n}}}{{{a_n}{b_n}}}(n∈{N^*})$,记数列{cn}的前n项和为Tn,求正整数k,使得对任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目: 来源: 题型:解答题

13.在三棱锥P-ABC中,平面PAC⊥平面ABC,PA⊥PC,AC⊥BC,D为AB的中点,M为PD的中点,N在棱BC上.
(Ⅰ)当N为BC的中点时,证明:DN∥平面PAC;
(Ⅱ)求证:PA⊥平面PBC;
(Ⅲ)是否存在点N使得MN∥平面PAC?若存在,求出$\frac{CN}{CB}$的值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,三棱柱ABC-A1B1C1中,底面ABC为等腰直角三角形,AB=AC=1,BB1=2,∠ABB1=60°.
(Ⅰ)证明:AB⊥B1C;
(Ⅱ)若B1C=2,求AC1与平面BCB1所成角的正弦值.

查看答案和解析>>

同步练习册答案