相关习题
 0  227936  227944  227950  227954  227960  227962  227966  227972  227974  227980  227986  227990  227992  227996  228002  228004  228010  228014  228016  228020  228022  228026  228028  228030  228031  228032  228034  228035  228036  228038  228040  228044  228046  228050  228052  228056  228062  228064  228070  228074  228076  228080  228086  228092  228094  228100  228104  228106  228112  228116  228122  228130  266669 

科目: 来源: 题型:填空题

11.若集合A={y|y=x2+2x+3},集合B={y|y=x+$\frac{4}{x}$},则A∩B=[4,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

10.函数y=$\frac{2x-a}{x-1}$的反函数的图象经过点(3,2),则a=1.

查看答案和解析>>

科目: 来源: 题型:填空题

9.方程42x-1=64的解为x=2.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=b•ax(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(-1,3)
(1)试求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{(1+x)(2-x)}$的定义域是集合A,函数g(x)=ln(x-a)的定义域是集合B.
(1)求集合A、B;
(2)若C={x|2${\;}^{{x}^{2}-2x-3}$<1},求A∩C.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,E、F、G分别为线段BC、PA、AB上的点,H为△PCD的重心,PA=AB=3,FA=BG=CE=1.
(1)求证:BF∥平面PDE;
(2)求异面直线GH与PE所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知正三棱柱ABC-A1B1C1的三视图如图所示.其中左视图面积为$\frac{\sqrt{3}}{4}$.俯视图的面积为2.D为AA1上的点.且A1D=$\frac{1}{4}$.其中F为线段AB上的点.
(I)若F为AB的中点,证明:B1D⊥平面A1CF;
(Ⅱ)若二面角A1-CF-A的余弦值为$\frac{\sqrt{17}}{17}$.判断此时点F的位置.

查看答案和解析>>

科目: 来源: 题型:解答题

4.己知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和圆C2:x2+y2=r2(r>0),已知圆C2的直径是椭圆C1焦距长的$\sqrt{2}$倍,且圆C2的面积为4π,椭圆C1的离心率为$\frac{\sqrt{6}}{3}$,过椭圆C1的上顶点A作一条斜率为k(k>0)的直线l与椭圆C1的另一个交点是B,与圆C2相交于点E,F.
(1)求椭圆C1的方程;
(2)当|AB|•|EF|=3$\sqrt{7}$时,求直线l的方程,并求△F2AB的面积(其中F2为椭圆C1的右焦点)

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点F($\sqrt{2}$,0),点D($\sqrt{2}$,1)在椭圆上
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线l:y=kx与椭圆C交于A,B两点,P为椭圆C上异于A,B的动点;若直线PA,PB的斜率都存在,判断kPA•kPB是否为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,O是坐标原点,以OP为直径的圆与直线y=$\frac{b}{a}$x的一个交点始终在第一象限,则双曲线的离心率e的取值范围是(1,$\sqrt{2}$].

查看答案和解析>>

同步练习册答案