相关习题
 0  227994  228002  228008  228012  228018  228020  228024  228030  228032  228038  228044  228048  228050  228054  228060  228062  228068  228072  228074  228078  228080  228084  228086  228088  228089  228090  228092  228093  228094  228096  228098  228102  228104  228108  228110  228114  228120  228122  228128  228132  228134  228138  228144  228150  228152  228158  228162  228164  228170  228174  228180  228188  266669 

科目: 来源: 题型:解答题

13.若双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的右顶点与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F1重合
(1)若以原点O为圆心,|OF1|为半径的圆恰好与椭圆有且仅有2个交点,求椭圆的方程;
(2)在(1)的条件下,过该椭圆右焦点的直线交椭圆于A,B两点,若双曲线左顶点为M,直线AB的倾斜角θ,当θ∈[60°,90°]时,求$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点是F(-c,0),斜率为2的直线l过点P并与两条渐近线交于A,B两点(A,B位于x轴同侧),且S△BOF=4S△AOF,则双曲线的离心率是(  )
A.$\frac{\sqrt{109}}{3}$B.$\frac{10}{3}$C.3D.$\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知双曲线C的中心在原点,焦点在x轴上,F1,F2分别是左,右焦点,P是右支上一点,PF2⊥F1F2,OH⊥PF1,垂足为H,若OF1=$\frac{4}{3}$OH,则离心率e=$\sqrt{7}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.在单位圆中,大小为2弧度的圆心角所对弦的长度为2sin1.

查看答案和解析>>

科目: 来源: 题型:选择题

9.角α的终边上一点的坐标为$(2sin\frac{2π}{3},2cos\frac{2π}{3})$,则sinα等于(  )
A.$-\frac{1}{2}$B.-1C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

8.如图的程序框图中输出S的结果是25,则菱形判断框内应填入的条件是(  )
A.i<9B.i≤9C.i>9D.i≥9

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若对于任意x∈R,都有f(x)≥k-g(x)恒成立,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

6.己知双曲线的焦点在x轴上.两个顶点的距离为2,焦点到渐近线的距离为$\sqrt{2}$,则双曲线的渐近线方程为y=±$\sqrt{2}$x.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知抛物线y2=2px(p>0)的焦点F与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦点重合,点M是抛物线与双曲线的一个交点,若MF⊥x轴,则该双曲线的离心率为$\sqrt{2}$+1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知向量$\overrightarrow a=(-1,2)$,$\overrightarrow b=(2,3)$,$\overrightarrow m=λ\overrightarrow a+\overrightarrow b$,$\overrightarrow n=\overrightarrow a-\overrightarrow b$,若$\overrightarrow m$与$\overrightarrow n$垂直,则实数λ的值是9,若$\overrightarrow m$与$\overrightarrow n$的夹角为钝角,则实数λ的取值范围是λ<9且λ≠-1.

查看答案和解析>>

同步练习册答案