相关习题
 0  227997  228005  228011  228015  228021  228023  228027  228033  228035  228041  228047  228051  228053  228057  228063  228065  228071  228075  228077  228081  228083  228087  228089  228091  228092  228093  228095  228096  228097  228099  228101  228105  228107  228111  228113  228117  228123  228125  228131  228135  228137  228141  228147  228153  228155  228161  228165  228167  228173  228177  228183  228191  266669 

科目: 来源: 题型:选择题

3.双曲线x2-y2=1的离心率是(  )
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

2.执行如图的程序框图,则输出的S=$\frac{25}{12}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知双曲线C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的焦距为$10\sqrt{5}$,点P(1,2)在双曲线C的渐近线上,则双曲线C的方程为(  )
A.$\frac{y^2}{20}-\frac{x^2}{5}=1$B.$\frac{y^2}{5}-\frac{x^2}{20}=1$C.$\frac{y^2}{100}-\frac{x^2}{25}=1$D.$\frac{y^2}{25}-\frac{x^2}{100}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

20.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F作一条直线,当直线斜率为l时,直线与双曲线左、右两支各有一个交点;当直线斜率为3时,直线与双曲线右支有两个不同的交点,则双曲线离心率的取值范围为(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{10}$)C.($\sqrt{2}$,$\sqrt{10}$)D.($\sqrt{5}$,$\sqrt{10}$)

查看答案和解析>>

科目: 来源: 题型:填空题

19.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)-g(x)|≤1成立,那么称函数f(x)在区间D上可被g(x)替代,D称为“替代区间”.给出以下命题:
①f(x)=x2+1在区间(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一个“替代区间”为[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在区间[1,e]可被g(x)=$\frac{1}{x}$-b替代,则0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(≠0),使得f(x)在区间D1∩D2上被g(x)替代.
其中真命题的有①②③.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线的夹角为90°,则双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{8}$=1的实轴长为(  )
A.6B.3C.4$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知(5,0)是双曲线$\frac{x^2}{16}-\frac{y^2}{b^2}$=1(b>0)的一个焦点,则b=3,该双曲线的渐近线方程为y=±$\frac{3}{4}$x.

查看答案和解析>>

科目: 来源: 题型:选择题

15.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}={1^{\;}}({a>b>0})$右焦点作双曲线其中一条渐近线的垂线与两渐近线分别交于A,B两点,O为坐标原点,且△AOB的面积为$\frac{{6{a^2}}}{5}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{5}}}{3}$C.$\frac{{\sqrt{13}}}{2}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

14.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F,作圆x2+y2=a2的切线FM与y轴交于点P(0,b),切圆于点M,则双曲线的离心率e为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

同步练习册答案