相关习题
 0  228001  228009  228015  228019  228025  228027  228031  228037  228039  228045  228051  228055  228057  228061  228067  228069  228075  228079  228081  228085  228087  228091  228093  228095  228096  228097  228099  228100  228101  228103  228105  228109  228111  228115  228117  228121  228127  228129  228135  228139  228141  228145  228151  228157  228159  228165  228169  228171  228177  228181  228187  228195  266669 

科目: 来源: 题型:选择题

3.若{an}是等差数列,首项a1>0,a2016+a2017>0,a2016.a2017<0,则使前n项和Sn>0成立的最大自然数n是(  )
A.4031B.4033C.4034D.4032

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}≤\frac{{n+8•{{(-1)}^{n+1}}}}{n}$对任意的n∈N+恒成立,则实数λ的最大值为-15.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线与圆x2+(y-2)2=2至多有一个交点,则双曲线离心率的取值范围是(  )
A.$[\sqrt{2},+∞)$B.[2,+∞)C.$({1,\sqrt{2}}]$D.(1,2]

查看答案和解析>>

科目: 来源: 题型:选择题

20.知点A,B分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F1(0,-c)(c>0),离心率为e,过F1平行于双曲线渐近线的直线与圆x2+y2=c2交于另一点P,且点P在抛物线x2=4cy上,则e2=(  )
A.$\frac{\sqrt{5}+2}{2}$B.$\frac{\sqrt{5}+2}{3}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{5}+1}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线的方程为x2-$\frac{{y}^{2}}{3}$=1,则该双曲线的渐近线方程是(  )
A.y=±3xB.y=±$\frac{\sqrt{3}}{3}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r-1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6
(3)若数列{an}为“6关联数列”,当n≥6时,在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,求dn,并探究在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知一条双曲线的渐近线方程为y=$\frac{1}{2}$x,且通过点A(3,3),则该双曲线的标准方程为$\frac{{y}^{2}}{\frac{27}{4}}$-$\frac{{x}^{2}}{27}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线与抛物线D:y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点,双曲线的离心率为$\frac{2\sqrt{3}}{3}$,△ABO的面积为2$\sqrt{3}$.
(Ⅰ)求双曲线C的渐近线方程;
(Ⅱ)求p的值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.双曲线C:$\frac{x^2}{4}-{y^2}=1$的离心率是$\frac{\sqrt{5}}{2}$,焦距是2$\sqrt{5}$.

查看答案和解析>>

同步练习册答案