相关习题
 0  228003  228011  228017  228021  228027  228029  228033  228039  228041  228047  228053  228057  228059  228063  228069  228071  228077  228081  228083  228087  228089  228093  228095  228097  228098  228099  228101  228102  228103  228105  228107  228111  228113  228117  228119  228123  228129  228131  228137  228141  228143  228147  228153  228159  228161  228167  228171  228173  228179  228183  228189  228197  266669 

科目: 来源: 题型:选择题

3.已知$\overrightarrow{AM}=-3\overrightarrow{MB}$,O为平面内任意一点,则下列各式成立的是(  )
A.$\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$B.$\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$C.$\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$D.$\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.集合A={a1,a2}的子集的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,直线AB经过圆O上的点C,并且OA=OB,CA=CB,圆O交直线OB于点E、D,其中D在线段OB上.连结EC,CD.
(Ⅰ)证明:直线AB是圆O的切线;
(Ⅱ)若tan∠CED=$\frac{1}{2}$,圆O的半径为3,求OA的长.

查看答案和解析>>

科目: 来源: 题型:选择题

20.方程$\frac{{x}^{2}}{4-t}$+$\frac{{y}^{2}}{t-1}$=1表示曲线C,给出以下命题:
①曲线C不可能为圆;
②若1<t<4,则曲线C为椭圆;
③若曲线C为双曲线,则t<1或t>4;
④若曲线C为焦点在x轴上的椭圆,则1<t<$\frac{5}{2}$.
其中真命题的序号是(  )
A.③④B.②③C.①④D.①②③④

查看答案和解析>>

科目: 来源: 题型:解答题

19.将由直线y=$\frac{2}{π}x$和曲线y=sinx,x∈[0,$\frac{π}{2}$]所围成的平面图形绕x轴旋转一周,求所得旋转体的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

18.设直线x-3y+t=0(t≠0)与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线分别交于点A,B.若点M(t,0)满足|MA|=|MB|,则双曲线的渐近线方程为(  )
A.y=±4xB.y=±2xC.y=±$\frac{1}{2}$xD.y=±$\frac{1}{4}$x

查看答案和解析>>

科目: 来源: 题型:填空题

17.若点O和点F分别为双曲线$\frac{{x}^{2}}{3}$-y2=1的中心和左焦点,点P为双曲线右支上的任意一点,则$\overrightarrow{OP}$•$\overrightarrow{FP}$的取值范围为[3+2$\sqrt{3}$,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

16.已知抛物线y2=4x的准线与双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0.b>0)$的一条渐近线交于点P(x0,-2),则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.双曲线$\frac{{x}^{2}}{4}$-y2=1的实轴长是4,离心率的值是$\frac{\sqrt{5}}{2}$,焦点到渐近线的距离是1.

查看答案和解析>>

科目: 来源: 题型:选择题

14.设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1作倾斜角为$\frac{π}{6}$的直线交双曲线的右支交于点P,若|PF2|=|F1F2|,则双曲线的离心率是(  )
A.$\sqrt{3}$-1B.$\frac{1+\sqrt{3}}{2}$C.$\sqrt{3}$+1D.$\frac{\sqrt{2}+\sqrt{6}}{2}$

查看答案和解析>>

同步练习册答案