相关习题
 0  228026  228034  228040  228044  228050  228052  228056  228062  228064  228070  228076  228080  228082  228086  228092  228094  228100  228104  228106  228110  228112  228116  228118  228120  228121  228122  228124  228125  228126  228128  228130  228134  228136  228140  228142  228146  228152  228154  228160  228164  228166  228170  228176  228182  228184  228190  228194  228196  228202  228206  228212  228220  266669 

科目: 来源: 题型:填空题

13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,点E、F分别为边CC1、B1C1的中点,点G、H分别在AA1、D1A1上,且满足AA1=3AG,D1H=2HA1,则异面直线EF、GH所成角的余弦值为$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.在长方体ABCD-A1B1C1D1中,AB=$\sqrt{2}$,BC=1,AA1=$\sqrt{3}$
(1)求异面直线AD1与BC所成角的大小
(2)求异面直线A1B与AD1所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若向量$\overrightarrow a$=(sinα,cosα-2sinα),$\overrightarrow b$=(1,2),且$\overrightarrow a$∥$\overrightarrow b$,则$\frac{1+2sinαcosα}{{{{sin}^2}α-{{cos}^2}α}}$=$-\frac{5}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图:已知,在△OAB中,点A是BC的中点,点D是将向量$\overrightarrow{OB}$分为2:1的一个分点,DC和OA交于点E,则三角形OEC与OBC的面积的比值是(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.已知实数x,y满足-1≤x+y≤2,3≤4x+y≤4,则9x+y的取值范围是(  )
A.[$\frac{14}{3}$,$\frac{37}{3}$]B.[$\frac{1}{3}$,$\frac{50}{3}$]C.[$\frac{11}{3}$,6]D.[$\frac{41}{6}$,$\frac{22}{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=mx+3,g(x)=x2+2x+m.
(I)解不等式f(x)≥g(x);
(Ⅱ)若不等式f(x)+g(x)≥0对任意的x∈(-1,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

7.有一个综艺节目,选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐,选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,某机构随机抽取50个参与节目的选手的年龄作为样本进行分析研究,由此得到如下频数分布表(所有参与节目的选手年龄都在[5,65)内).
选手年龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
 频数 2 12 16 10 73
(Ⅰ)在表中作出这些数据的频率分布直方图;

(Ⅱ)若将频率视为概率,从参与节目的选手中随机抽取3位(看作有放回地抽取),求年龄在[35,45)内的选手人数X的分布列、数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

6.某iphone手机专卖店对某市市民进行iphone手机认可度的调查,在已购买iPhone手机的1000名市民中随机抽取100名,按年龄(单位:岁)进行统计的频率分布表和频率分布直方图如下:
 分组(岁)频数 
[25,30) 5
[30,35) x
[35,40) 35
[40,45) y
[45,50] 10
 合计100
(1)求频数分布表中x,y的值;
(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加iphone手机宣传活动,现从这20人中随机选取2人各赠送一部iphone6s手机,设这2名市民中年龄在[40,45)内的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某调查机构从某县农村淘宝服务网点中随机抽取20个网点作为样本进行元旦期间网购金额(单位:万元)的调查.获得的所有样本数据按照区间[0,5],(5,10],(10,15],(15,20],(20,25]进行分组,得到如图所示的频率直方图
(1)根据样本数据,估计样本中网购金额的平均值;(注:设样本数据第i组的频率为pi,第i组区间的中点值为xi(i=1,2,3,4,5),则样本数据的平均值为X=x1p1+x2p2+x3p3+x4p4+x5p5
(2)若网购金额在(15,25]的服务网点定义为优秀网点,其余为非优秀服务网点,从20个服务网点中任选2个,记ξ表示选到优秀网点的个数,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知某班n名同学的数学测试成绩(单位:分,满分100分)的频率分布直方图如图所示,其中a,b,c成等差数列,且成绩在[90,100]内的有6人.
(1)求n的值;
(2)若成绩在[40,50)内的人数是成绩在[50,60)内的人数的$\frac{1}{3}$,规定60分以下为不及格,从不及格的人中任意选取3人,求成绩在50分以下的人数X的分布列和数学期望.

查看答案和解析>>

同步练习册答案