相关习题
 0  228045  228053  228059  228063  228069  228071  228075  228081  228083  228089  228095  228099  228101  228105  228111  228113  228119  228123  228125  228129  228131  228135  228137  228139  228140  228141  228143  228144  228145  228147  228149  228153  228155  228159  228161  228165  228171  228173  228179  228183  228185  228189  228195  228201  228203  228209  228213  228215  228221  228225  228231  228239  266669 

科目: 来源: 题型:解答题

5.求证不等式:-1<$\frac{1}{2}$+$\frac{2}{5}$+$\frac{3}{10}$+…+$\frac{n}{{n}^{2}+1}$-lnn≤$\frac{1}{2}$,n∈N*

查看答案和解析>>

科目: 来源: 题型:填空题

4.如图,双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)虚轴上的端点B(0,b),右焦点F,若以B为圆心的圆与C的一条渐近线相切于点P,且$\overrightarrow{BP}$∥$\overrightarrow{PF}$,则该双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点到一条渐近线的距离不大于$\frac{{\sqrt{5}}}{3}c$(c为双曲线的半焦距长),则双曲线离心率的取值范围为(  )
A.$[\frac{{3\sqrt{5}}}{2},+∞)$B.$(1,\frac{3}{2}]$C.$(1,\frac{{3\sqrt{5}}}{2}]$D.$[\frac{3}{2},+∞)$

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知双曲线C:$\frac{{x}^{2}}{3}$-y2=1的左、右焦点分别为F1,F2,过点F2的直线与双曲线C的右支相交于P、Q两点,且点P的横坐标为2,则△PF1Q的周长为$\frac{16\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在几何体ABCDEF中,FA⊥平面ABCD,EC∥FA,FA=2EC=2$\sqrt{2}$,底面ABCD为平行四边形,AD⊥BD,AD=BD=2,FD⊥BE.
(1)求证:FD⊥平面BDE;
(2)求三棱锥F-BDE的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若直线l过点P(-3,-$\frac{3}{2}$)且被圆x2+y2=25截得的弦长是8,则直线l的方程为(  )
A.3x+4y+15=0B.x=-3或3x+4y+15=0
C.x=-3或y=-$\frac{3}{2}$D.x=-3

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=4x2-6x+2.
(1)求f(x)的单调区间
(2)f(x)在[2,4]上的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知f(x)=ax2-bx+3
(1)若a=-2,b=5,求f(x)≥0的解集;
(2)若f(x)<2x的解集是(-3,-1),求a,b;
(3)若b=-1,当x∈R,f(x)>a恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(3,$\frac{π}{2}$),半径为1的圆.
(Ⅰ)求曲线C1,C2的直角坐标方程;
(Ⅱ)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,AC=$\sqrt{3}$,AD=DE=2.
(Ⅰ)在线段CE上取一点F,作BF∥平面ACD(只需指出F的位置,不需证明);
(Ⅱ)对(Ⅰ)中的点F,求三棱锥B-FCD的体积.

查看答案和解析>>

同步练习册答案