相关习题
 0  228079  228087  228093  228097  228103  228105  228109  228115  228117  228123  228129  228133  228135  228139  228145  228147  228153  228157  228159  228163  228165  228169  228171  228173  228174  228175  228177  228178  228179  228181  228183  228187  228189  228193  228195  228199  228205  228207  228213  228217  228219  228223  228229  228235  228237  228243  228247  228249  228255  228259  228265  228273  266669 

科目: 来源: 题型:选择题

17.直线$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=1-\frac{{\sqrt{3}}}{2}t\end{array}\right.$( t为参数)倾斜角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目: 来源: 题型:填空题

16.设双曲线的方程$\frac{y^2}{4}-\frac{x^2}{8}=1$,则该双曲线的离心率为$\sqrt{3}$,渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知直线2x+y-10=0过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的焦点且与该双曲线的一条渐近线垂直,则该双曲线的方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}=1$B.$\frac{x^2}{20}-\frac{y^2}{5}=1$C.$\frac{x^2}{5}-\frac{y^2}{20}=1$D.$\frac{x^2}{9}-\frac{y^2}{16}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

14.设A1,A2分别为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右顶点,若双曲线上存在点M使得两直线斜率${k_{M{A_1}}}{k_{M{A_2}}}<2$,则双曲线C的离心率的取值范围为(  )
A.$(0,\sqrt{3})$B.$(1,\sqrt{3})$C.$(\sqrt{3},+∞)$D.(0,3)

查看答案和解析>>

科目: 来源: 题型:解答题

13.三个女生和四个男生排成一排
(Ⅰ)如果女生必须全排在一起,有多少种不同的排法?
(Ⅱ)如果女生必须全分开,有多少种不同的排法?
(Ⅲ)如果两端不能都排女生,有多少种不同的排法?

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知数列{an}满足a1=$\frac{1}{2}$,an+1an=2an+1-1(n∈N*),令bn=an-1.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)令cn=$\frac{{a}_{{2}^{n}+1}}{{a}_{{2}^{n}}}$,求证:c1+c2+…+cn<n+$\frac{7}{24}$.

查看答案和解析>>

科目: 来源: 题型:选择题

11.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a.b>0)的右焦点与抛物线y2=2px(p>0)的焦点F重合,两条曲线在第一象限的交点为M,若MF⊥x轴,则该双曲线的离心率e=(  )
A.$\sqrt{2}$B.$\sqrt{2}$+1C.$\sqrt{5}$D.$\sqrt{5}$-1

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}满足${a_1}=1,{a_2}=2,{a_{2n+1}}={a_{2n-1}}+2,{a_{2n+2}}=3{a_{2n}},(n∈{N^*})$.数列{an}前n项和为Sn
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若amam+1=am+2,求正整数m的值;
(Ⅲ)是否存在正整数m,使得$\frac{{{S_{2m}}}}{{{S_{2m-1}}}}$恰好为数列{an}中的一项?若存在,求出所有满足条件的m值,若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

9.关于函数f(x)=sin4x-cos4x(x∈R)有下列命题:
①y=f(x)的周期为$\frac{π}{2}$;
②$x=\frac{π}{8}$是y=f(x)的一条对称轴;
③y=f(x)在[0,$\frac{π}{2}$]上是增函数,其中正确的命题序号是③
(把你认为正确命题的序号都写上).

查看答案和解析>>

科目: 来源: 题型:填空题

8.抛物线y2=8x的准线与双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线所围成的三角形面积为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案