相关习题
 0  228155  228163  228169  228173  228179  228181  228185  228191  228193  228199  228205  228209  228211  228215  228221  228223  228229  228233  228235  228239  228241  228245  228247  228249  228250  228251  228253  228254  228255  228257  228259  228263  228265  228269  228271  228275  228281  228283  228289  228293  228295  228299  228305  228311  228313  228319  228323  228325  228331  228335  228341  228349  266669 

科目: 来源: 题型:选择题

6.已知离心率为2的双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的实轴长为8,则该双曲线的渐近线方程为(  )
A.y=±$\sqrt{3}$xB.y=±$\sqrt{2}$xC.y=±$\frac{\sqrt{3}}{3}$xD.y=±$\frac{\sqrt{2}}{2}$x

查看答案和解析>>

科目: 来源: 题型:填空题

5.设F1、F2分别为双曲线$C:{x^2}-\frac{y^2}{24}=1$的左、右焦点,P为双曲线C在第一象限上的一点,若$\frac{{|P{F_1}|}}{{|P{F_2}|}}=\frac{4}{3}$,则△PF1F2内切圆的面积为4π.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知点F1,F2为双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

3.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线与抛物线y=x2+2只有一个公共点,则该双曲线的离心率为(  )
A.3B.2C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.如图,圆C内切于扇形AOB,$∠AOB=\frac{π}{3}$,若向扇形AOB内随机投掷600个点,则落入圆内的点的个数估计值为(  )
A.100B.200C.400D.450

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知抛物线y2=2px的准线方程为x=-1焦点为F,A,B,C为该抛物线上不同的三点,$\overrightarrow{\left|{FA}\right|},\overrightarrow{\left|{FB}\right|},\overrightarrow{\left|{FC}\right|}$成等差数列,且点B在x轴下方,若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=0$,则直线AC的方程为2x-y-1=0.

查看答案和解析>>

科目: 来源: 题型:选择题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的渐近线方程与圆(x-$\sqrt{3}$)2+(y-1)2=1相切,则此双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知A,B为双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上两点,O为坐标原点,若△OAB是边长为c的等边三角形,且c2=a2+b2,则双曲线C的渐近线方程为y=±x.

查看答案和解析>>

科目: 来源: 题型:选择题

18.平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点F(2,0),以F为圆心,FO为半径的圆与双曲线的两条渐近线分别交于A,B(不同于O),当|$\overrightarrow{AB}$|取最大值时双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知A,B分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P是双曲线C右支上位于第一象限的动点,设PA,PB的斜率分别为k1,k2,则k1+k2的取值范围为(  )
A.($\frac{2b}{a}$,+∞)B.($\frac{b}{a}$,+∞)C.[$\frac{b}{a}$,+∞)D.[$\frac{b}{a}$,$\frac{2b}{a}$)

查看答案和解析>>

同步练习册答案