相关习题
 0  228204  228212  228218  228222  228228  228230  228234  228240  228242  228248  228254  228258  228260  228264  228270  228272  228278  228282  228284  228288  228290  228294  228296  228298  228299  228300  228302  228303  228304  228306  228308  228312  228314  228318  228320  228324  228330  228332  228338  228342  228344  228348  228354  228360  228362  228368  228372  228374  228380  228384  228390  228398  266669 

科目: 来源: 题型:选择题

7.设点A,F(c,0)分别是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右顶点、右焦点,直线x=$\frac{a^2}{c}$交该双曲线的一条渐近线于点P,若△PAF是等腰三角形,则此双曲线的离心率为(  )
A.$\sqrt{3}$B.3C.$\sqrt{2}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

6.一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为(  )
A.20πB.$\frac{{20\sqrt{5}π}}{3}$C.D.$\frac{{5\sqrt{5}π}}{6}$

查看答案和解析>>

科目: 来源: 题型:填空题

5.设f是从集合A={1,2}到集合B={0,1,2,3,4}的映射,则满足f(1)+f(2)=4的所有映射的个数为5个.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知双曲线mx2-ny2=1(m>0、n>0)的离心率为2,则椭圆mx2+ny2=1的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知直角梯形ABCD中,AD⊥AB,AB∥DC,AB=2,DC=3,E为AB的中点,将四边形AEFD沿EF折起使面AEFD⊥面EBCF,过E作EF∥AD,
(1)若G为DF的中点,求证:EG∥面BCD;
(2)若AD=2,试求多面体AD-BCFE体积.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知双曲线的一条渐近线方程为y=4x,且双曲线的焦点与抛物线y2=8x的焦点是重合的,则双曲线的标准方程为(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

查看答案和解析>>

科目: 来源: 题型:选择题

1.若正四棱锥的侧棱长为$\sqrt{3}$,侧面与底面所成的角是45°,则该正四棱锥的体积是(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.$\frac{2\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.F为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的右焦点,点P在双曲线右支上,△POF(O为坐标原点)满足OF=OP=5,$P{F_{\;}}=2\sqrt{5}$,则双曲线的离心率为 (  )
A.$\sqrt{3}+1$B.$\sqrt{5}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的左、右焦点分别为F1、F2,P为双曲线右支上一点,点Q的坐标为(-2,3),则|PQ|+|PF1|的最小值为7.

查看答案和解析>>

科目: 来源: 题型:填空题

18.若复数z=$\frac{1-2i}{3-i}$(i为虚数单位),则z的模为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案