相关习题
 0  228273  228281  228287  228291  228297  228299  228303  228309  228311  228317  228323  228327  228329  228333  228339  228341  228347  228351  228353  228357  228359  228363  228365  228367  228368  228369  228371  228372  228373  228375  228377  228381  228383  228387  228389  228393  228399  228401  228407  228411  228413  228417  228423  228429  228431  228437  228441  228443  228449  228453  228459  228467  266669 

科目: 来源: 题型:填空题

13.在平面直角坐标系中,O为坐标原点,过点P(1,1)作直线L与圆x2+y2=9分别相交于A、B两点,则当|AB|从最短到最长(逆时针方向旋转)变化的过程中,直线L的斜率的取值范围是[-1,1].

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,设$\overrightarrow{AB}$=$\overrightarrow{c}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,点D在BC边上且$\overrightarrow{AD}$=λ($\frac{c}{|c|sinB}+\frac{b}{|b|sinC}$)(λ∈R),则(  )
A.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\overrightarrow{b}$B.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$+$\frac{1}{2}$$\overrightarrow{b}$C.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\frac{1}{2}$$\overrightarrow{b}$D.$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{c}$-$\overrightarrow{b}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知平行四边形ABCD,△ABD的重心为O,若$\overrightarrow{AB}$+$\overrightarrow{AD}$=λ$\overrightarrow{AO}$,则λ=3.

查看答案和解析>>

科目: 来源: 题型:填空题

10.函数f(x)=$\frac{{2}^{x}-3}{{2}^{x}+3}$的值域为(-1,1).

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=(x-2)1n(2-x)和函数y=g(x)的图象关于点(1,0)对称.
(1)若方程g(x)+x2+ax+2=0有实数根,求实数a的范围;
(2)若?x∈(0,+∞),g(x)+bx3-x2+x≤0恒成立,求实数b的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知a>0,且不等式(x+t+$\frac{1}{t}$+a)2+(x-$\frac{1}{t}$-2)2≥50对于任意实数x∈R,t>0恒成立,则a的取值范围是(0,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

7.在正五边形ABCDE中,已知$\overrightarrow{AB}$•$\overrightarrow{AD}$=8,则该正五边形的边长为4.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=eax+b(a,b为实常数),曲线y=f(x)在点(0,1)处的切线方程为y=x+1,而函数g(x)与函数f(x)互为反函数.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)设m>n>0,求证:$\frac{8(m-n)}{g(m)-g(n)}$<(${m}^{\frac{1}{3}}$+${n}^{\frac{1}{3}}$)3

查看答案和解析>>

科目: 来源: 题型:填空题

5.设{an}是公差不为0的等差数列,a1=4且a1,a3,a6成等比数列,则{an}的前n项和Sn=$\frac{{n}^{2}+7n}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若直线y=x+b与圆x2+y2=5总有交点,则b的取值范围是[-$\sqrt{10}$,$\sqrt{10}$].

查看答案和解析>>

同步练习册答案