相关习题
 0  228336  228344  228350  228354  228360  228362  228366  228372  228374  228380  228386  228390  228392  228396  228402  228404  228410  228414  228416  228420  228422  228426  228428  228430  228431  228432  228434  228435  228436  228438  228440  228444  228446  228450  228452  228456  228462  228464  228470  228474  228476  228480  228486  228492  228494  228500  228504  228506  228512  228516  228522  228530  266669 

科目: 来源: 题型:解答题

3.已知双曲线C的渐近线方程为y=±x,一个焦点为(2$\sqrt{2}$,0).
(1)求双曲线C的方程;
(2)过双曲线C上的任意一点P,分别作这两条渐近线的平行线与这两条渐近线得到四边形ODPG,证明四边形ODPG的面积是一个定值;
(3)(普通中学做)命题甲:设直线x=0与y=h(h>0)在第一象限内与渐近线y=x所围成的三角形OMN绕着y轴旋转一周所得几何体的体积.

(重点中学做)命题乙:设直线y=0与y=h(h>0)在第一象限内与双曲线及渐近线所围成的如图所示的图形OABN,求它绕y轴旋转一圈所得几何体的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

2.(重点中学做)对于曲线C所在的平面上的定点P,若存在以点P为顶点的角α,使得α≥∠APB对于曲线C上的任意两个不同的点A、B恒成立,则称角α为曲线C的“P点视角”,并称其中最小的“P点视角”为曲线C相对于点P的“P点确视角”.已知曲线C:${x^2}-\frac{y^2}{3}=1$(x>0),相对于坐标原点O“O点确视角”的大小是$\frac{2π}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知在双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$中,F1,F2分别是左右焦点,A1,A2,B1,B2分别为双曲线的实轴与虚轴端点,若以A1A2为直径的圆总在菱形F1B1F2B2的内部,则此双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$离心率的取值范围是(  )
A.$(1,\frac{{1+\sqrt{5}}}{2})$B.[$\frac{1+\sqrt{5}}{2}$,+∞)C.$(1,\frac{{1+\sqrt{3}}}{2})$D.$(\frac{{1+\sqrt{3}}}{2},+∞)$

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知点F1(-5,0),F2(5,0),动点M满足|MF1|-|MF2|=8,则动点M的轨迹方程是(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}$=1(x>0)B.$\frac{x^2}{16}-\frac{y^2}{9}$=1C.$\frac{x^2}{16}-\frac{y^2}{9}$=1(x<0)D.$\frac{x^2}{25}+\frac{y^2}{9}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知椭圆C的长轴长为10,离心率为$\frac{4}{5}$,则椭圆C的标准方程是(  )
A.$\frac{x^2}{100}+\frac{y^2}{36}$=1
B.$\frac{x^2}{100}+\frac{y^2}{36}$=1或 $\frac{x^2}{36}+\frac{y^2}{100}$=1
C.$\frac{x^2}{25}+\frac{y^2}{9}$=1
D.$\frac{x^2}{25}+\frac{y^2}{9}$=1或 $\frac{x^2}{9}+\frac{y^2}{25}$=1

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的实轴的两个端点和虚轴的两个端点恰好构成一个正方形,则此双曲线的离心率为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 来源: 题型:选择题

17.对于实数a,b,c,下列结论中正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则$\frac{1}{a}$>$\frac{1}{b}$
C.若a<b<0,则$\frac{a}{b}$<$\frac{b}{a}$D.若a>b,$\frac{1}{a}$>$\frac{1}{b}$,则ab<0

查看答案和解析>>

科目: 来源: 题型:填空题

16.函数f(x)=|x2-x-a|在x∈(0,1)上存在最大值,则实数a的取值范围是[-$\frac{1}{8}$,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知动点P位于抛物线y2=4x上,定点An的坐标为($\frac{2}{3}$n,0)(n=1,2,3,4),则|$\overrightarrow{P{A}_{1}}$+$\overrightarrow{P{A}_{2}}$|+|$\overrightarrow{P{A}_{3}}$+$\overrightarrow{P{A}_{4}}$|的最小值为(  )
A.4B.$\frac{10}{3}$C.$\frac{20}{3}$D.2

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,对称轴为x轴,它的准线过双曲线C1的左焦点F1,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,双曲线C1的一个焦点到其渐近线距离的平方是2+2$\sqrt{2}$,则抛物线C2的方程是y2=4($\sqrt{2}$+1)x.

查看答案和解析>>

同步练习册答案