相关习题
 0  228402  228410  228416  228420  228426  228428  228432  228438  228440  228446  228452  228456  228458  228462  228468  228470  228476  228480  228482  228486  228488  228492  228494  228496  228497  228498  228500  228501  228502  228504  228506  228510  228512  228516  228518  228522  228528  228530  228536  228540  228542  228546  228552  228558  228560  228566  228570  228572  228578  228582  228588  228596  266669 

科目: 来源: 题型:选择题

3.定义在R上的函数f(x)满足:f(x+4)=f(x),f(x)=$\left\{\begin{array}{l}{2x,x∈(-1.1]}\\{-{x}^{2}+2x+1,x∈(1,3]}\\{\;}\end{array}\right.$,当x∈[0,+∞)时,方程f(x)-4xa=0(a>0)有且只有3个不等实根,则实数a的值为(e是自然对数底数)(  )
A.$\frac{1}{{2}^{8}eln2}$B.$\frac{1}{{2}^{9}}$C.$\frac{e}{{2}^{8}ln2}$D.$\frac{e}{{2}^{9}}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在中心角为60°,半径为1的扇形OAB的半径OB上任取一点M,作内接矩形MNPQ,设∠QOA=θ,矩形MNPQ的面积为S.
(1)求S关于θ的函数解析式;
(2)求S的最大值;
(3)如果分别在OA,OB上任取一点C、D,使OC=OD,按如图方式作扇形的内接矩形CDEF,设该矩形的面积为S′,问S′的最大值与S的最大值,哪一个更大,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在空间多面体ABCDE中,四边形ABCD为直角梯形,AB∥DC,AD⊥CD,△ADE是正三角形,CD=DE=2AB=2a,CE=$\sqrt{2}$CD.
(1)求证:平面CDE⊥平面ADE;
(2)求多面体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知数列{an}满足a1=1,且9an+1an-2•an+1-4an+1=0 (n∈N*).
(1)求a2,a3,a4的值;
(2)求{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右顶点为A,左焦点为F,离心率为$\frac{\sqrt{2}}{2}$,过点F的直线l交椭圆C于M、N两点,当l垂直于x轴时,△AMN的面积为$\frac{2+\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)若直线x=-2上存在点P,使得△PMN为等边三角形,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

18.用数学归纳法证明:当n≥2,n∈N时,$\frac{1}{n}$+$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{{n}^{2}}$>1.

查看答案和解析>>

科目: 来源: 题型:填空题

17.设P是曲线2x2-y2=1上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程为8x2-4y2=1.

查看答案和解析>>

科目: 来源: 题型:填空题

16.当实数x,y满足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$时,ax+y≤4恒成立,则实数a的取值范围是(-∞,$\frac{3}{2}$].

查看答案和解析>>

科目: 来源: 题型:解答题

15.若动点M到定点A(0,1)与定直线l:y=3的距离之和为4.
(1)求点M的轨迹方程,并画出方程的曲线草图;
(2)记(1)得到的轨迹为曲线C,问曲线C上关于点B(0,t)(t∈R)对称的不同点有几对?请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如果x是实数,且x>-1,x≠0,n为大于1的自然数,用数学归纳法证明:(1+x)n>1+nx.

查看答案和解析>>

同步练习册答案