相关习题
 0  228531  228539  228545  228549  228555  228557  228561  228567  228569  228575  228581  228585  228587  228591  228597  228599  228605  228609  228611  228615  228617  228621  228623  228625  228626  228627  228629  228630  228631  228633  228635  228639  228641  228645  228647  228651  228657  228659  228665  228669  228671  228675  228681  228687  228689  228695  228699  228701  228707  228711  228717  228725  266669 

科目: 来源: 题型:填空题

8.若关于a,b的代数式f(a,b)满足:
(1)f(a,a)=a;
(2)f(ka,kb)=k•f(a,b);
(3)f(a1+a2,b1+b2)=f(a1,b1)+f(a2,b2);
(4)$f(a,b)=f(b,\frac{a+b}{2})$,
则f(1,0)+f(2,0)=0;f(x,y)=y.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是等边三角形.
(1)证明:PB⊥CD;
(2)求二面角A-PD-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.正方体ABCD-A1B1C1D1中,点E在棱CC1上,CE=2EC1,AB=6,M,N分别为棱AB和AD的中点.
(1)求三棱锥M-BDE的体积;
(2)求证:平面C1MN∥平面BDE.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知抛物线关于x轴对称,它的顶点在坐标原点O,若点M(-2,y)在抛物线上,且点M到该抛物线焦点的距离为3,
(1)求抛物线的标准方程及点M的坐标.
(2)过点C(-3,$\frac{1}{2}$)做直线l,使得直线l与抛物线相交于A,B两点.恰好C为弦AB的中点,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若2(x-$\frac{1}{3}$$\overrightarrow{a}$)-$\frac{1}{2}$($\overrightarrow{a}$-3$\overrightarrow{b}$+$\overrightarrow{c}$)+$\overrightarrow{b}$=$\overrightarrow{0}$,其中$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为已知向量,则未知向量$\overrightarrow{x}$=$\frac{7}{12}$$\overrightarrow{a}$-$\frac{5}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.命题“?x∈(-1,1),2x+a=0”是真命题,则a的取值范围是(-2,2).

查看答案和解析>>

科目: 来源: 题型:解答题

2.正方体ABCD-A1B1C1D1中,连接A1C1,A1B,BC1,AD1,AC,CD1
(1)求证:A1C1∥平面ACD1
(2)求证:平面A1BC1∥平面ACD1
(3)设正方体ABCD-A1B1C1D1的棱长为a,求四面体ACB1D1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,已知四边形ABEF为矩形,四边形ABCD为直角梯形,平面ABEF⊥平面ABCD,∠BAD=90°,AB∥CD,AF=BC=2,CD=3,AB=4.
(1)求证:AC⊥平面BCE;
(2)求三棱锥E-BCF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数f(x)=lnx-x.
(1)求函数f(x)的图象在x=1处的切线方程;
(2)证明:|f(x)|>$\frac{lnx}{x}$;
(3)设m>n>0,比较$\frac{f(m)+m-[f(n)+n]}{m-n}$与$\frac{m}{{m}^{2}+{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

9.函数f(x)=λx(1-x)(λ>0,x∈[0,1])称为逻辑斯蒂克函数,此函数也是动物繁衍的数学模型,今有λ=4.
(1)求函数F(x)=[f(x)]2在[$\frac{1}{4}$,$\frac{3}{4}$]上的最值;
(2)在函数g(x)=$\frac{f(tanx)}{tanx}$图象的所有切线中,是否存在切线l与直线m:(a+b)x-8$\sqrt{ab}$y+12=0(ab>0)垂直?请说明你的理由.

查看答案和解析>>

同步练习册答案