相关习题
 0  228534  228542  228548  228552  228558  228560  228564  228570  228572  228578  228584  228588  228590  228594  228600  228602  228608  228612  228614  228618  228620  228624  228626  228628  228629  228630  228632  228633  228634  228636  228638  228642  228644  228648  228650  228654  228660  228662  228668  228672  228674  228678  228684  228690  228692  228698  228702  228704  228710  228714  228720  228728  266669 

科目: 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+$\sqrt{2}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,当$|\overrightarrow{OA}-\overrightarrow{OB}|<\frac{{2\sqrt{5}}}{3}$时,求直线斜率的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,不经过原点O的直线l:y=kx+m(k>0)与椭圆E相交于不同的两点A、B,直线OA,AB,OB的斜率依次构成等比数列.
(Ⅰ)求a,b,k的关系式;
(Ⅱ)若离心率$e=\frac{1}{2}$且$|{AB}|=\sqrt{7}|{m+\frac{1}{m}}|$,当m为何值时,椭圆的焦距取得最小值?

查看答案和解析>>

科目: 来源: 题型:解答题

16.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的质量状况的指数,空气质量按照AQI大小分为六级,0~50为优;51~100为良101-150为轻度污染;151-200为中度污染;201~300为重度污染;>300为严重污染.
一环保人士记录去年某地某月10天的AQI的茎叶图如图.
(Ⅰ)利用该样本估计该地本月空气质量优良(AQI≤100)的天数;(按这个月总共30天)
(Ⅱ)将频率视为概率,从本月中随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知a>b>0,试指出$\frac{a+b}{2}$-$\sqrt{ab}$,$\frac{(a-b)^{2}}{8a}$,$\frac{(a-b)^{2}}{8b}$的大小关系,并给出证明.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某学校对参加“社会实践活动”的全体志愿者进行学分考核,因该批志愿者表现良好,学校决定考核只有合格和优秀两个等次,若某志愿者考核我合格,授予1个学分;考核为优秀,授予2个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为$\frac{4}{5},\frac{2}{3},\frac{2}{3}$,他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

13.大学开设甲、乙、丙三门选修课供学生任意选修(也可不选),假设学生是否选修哪门课彼此互不影响.已知某学生只选修甲一门课的概率为0.08,选修甲和乙两门课的概率为0.12,至少选修一门的概率是0.88.
(1)求该学生选修甲、乙、丙的概率分别是多少?
(2)用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积,求ξ的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:选择题

12.设a1,a2,…,a2016∈[-2,2],且a1+a2+…+a2016=0,则f=a${\;}_{1}^{3}$+a${\;}_{2}^{3}$+…+a${\;}_{2016}^{3}$的最大值是(  )
A.2016B.3024C.4032D.5040

查看答案和解析>>

科目: 来源: 题型:解答题

11.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).
在某次数学活动中,每位参加者需从所有的“三位递增数”中随机抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”,并求其发生的概率;
(Ⅱ)若甲参加活动,求甲得分X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

10.某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试跳远的成绩用茎叶图表示如下(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(Ⅰ)求男生跳远成绩的中位数;
(Ⅱ)如果用分层抽样的方法从男、女生中共抽取5人,求抽取的5人中女生人数;
(Ⅲ)若从男、女生测试成绩“合格”的学生中选取2名参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

9.某初中对初二年级的学生进行体质测试,已知初二一班共有学生30人,测试立定跳远的成绩用茎叶图表示如下(单位:cm):
男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”;
女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.
(1)求女生立定跳远成绩的中位数;
(2)若在男生中用分层抽样的方法抽取6个人,求抽取成绩“合格”的学生人数;
(3)若从全班成绩“合格”的学生中选取2个人参加复试,用X表示其中男生的人数,试写出X的分布列,并求X的数学期望.

查看答案和解析>>

同步练习册答案