相关习题
 0  228572  228580  228586  228590  228596  228598  228602  228608  228610  228616  228622  228626  228628  228632  228638  228640  228646  228650  228652  228656  228658  228662  228664  228666  228667  228668  228670  228671  228672  228674  228676  228680  228682  228686  228688  228692  228698  228700  228706  228710  228712  228716  228722  228728  228730  228736  228740  228742  228748  228752  228758  228766  266669 

科目: 来源: 题型:解答题

3.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两焦点为F1(-c,0),F2(c,0),椭圆的上顶点M满足$\overrightarrow{{F_1}M}$•$\overrightarrow{{F_2}M}$=0.
(Ⅰ)求椭圆C的离心率e;
(Ⅱ)若以点N(0,2)为圆心,且与椭圆C有公共点的圆的最大半径为$\sqrt{26}$.
(ⅰ)求此时椭圆C的方程;
(ⅱ)椭圆C上是否存在两点A,B关于直线l:y=kx-1(k≠0)对称,若存在,求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=x+alnx,g(x)=f(x)+$\frac{1}{2}{x^2}$-bx.
(1)讨论函数f(x)的单调性;
(2)若f(x)在x=1处的切线与直线x+2y=0垂直,求a的值;
(3)在(2)的条件下,设x1,x2(x1<x2)是函数g(x)的两个极值点,记t=$\frac{x_1}{x_2}$,若b≥$\frac{13}{3}$,t的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知ω>0,函数f(x)=sinωx+$\sqrt{3}$cosωx在(0,$\frac{π}{2}}$)上单调递增,则ω的取值范围是(  )
A.0<ω≤$\frac{1}{3}$B.$\frac{1}{4}$<ω≤$\frac{1}{3}$C.0<ω≤$\frac{1}{4}$D.$\frac{1}{12}$<ω≤$\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知圆O:x2+y2=r2(r>0),点P为圆O上任意一点(不在坐标轴上),过点P作倾斜角互补的两条直线分别交圆O于另一点A,B.
(1)当直线PA的斜率为2时,
①若点A的坐标为(-$\frac{1}{5}$,-$\frac{7}{5}$),求点P的坐标;
②若点P的横坐标为2,且PA=2PB,求r的值;
(2)当点P在圆O上移动时,求证:直线OP与AB的斜率之积为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.(1)求$y=sin(2x-\frac{π}{6})+2,x∈[{-\frac{π}{2},\frac{π}{3}}]$的值域.
(2)求函数y=sin2x-acosx+3,x∈[0,π]的最大值和最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知$|\overrightarrow a|$=1,$|\overrightarrow b|$=2,$\overrightarrow a$与$\overrightarrow b$的夹角为60°.求:
(1)$|\overrightarrow a+\overrightarrow b|$,$|\overrightarrow a-\overrightarrow b|$
(2)$\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角θ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

17.若用P表示已知条件、已有的定义、定理、公理等,Q表示所要证明的结论,则如图框图表示的证明方法是(  )
A.合情推理B.综合法C.分析法D.反证法

查看答案和解析>>

科目: 来源: 题型:填空题

16.三段论推理“①矩形是平行四边形;②正方形是矩形;③正方形是平行四边形”中的小前提是②.(填写序号)

查看答案和解析>>

科目: 来源: 题型:解答题

15.在△ABC中,∠C=$\frac{π}{2}$,求证:∠B<$\frac{π}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知函数f(x)=$\frac{a(x-1)}{x+1}$-lnx在[1,+∞)上是减函数,则实数a的取值范围为(  )
A.a<1B.a<2C.a≤2D.a≤3

查看答案和解析>>

同步练习册答案