相关习题
 0  228577  228585  228591  228595  228601  228603  228607  228613  228615  228621  228627  228631  228633  228637  228643  228645  228651  228655  228657  228661  228663  228667  228669  228671  228672  228673  228675  228676  228677  228679  228681  228685  228687  228691  228693  228697  228703  228705  228711  228715  228717  228721  228727  228733  228735  228741  228745  228747  228753  228757  228763  228771  266669 

科目: 来源: 题型:解答题

13.已知函数f(x)=ax+$\frac{a-1}{x}$-2a+1(a>0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)≥lnx在[1,+∞)上恒成立,求实数a的取值范围;
(Ⅲ)证明:$\sum_{k=2}^n{ln\frac{k-1}{k+1}}>\frac{{2-n-{n^2}}}{{\sqrt{2n(n+1)}}}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知:
1+$\frac{1}{2}$=$\frac{3}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$>2
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$>$\frac{5}{2}$
1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{7}$+$\frac{1}{8}$+$\frac{1}{9}$+…+$\frac{1}{16}$>3

以此类推,写出一般的结论并加以证明.

查看答案和解析>>

科目: 来源: 题型:选择题

11.将函数f(x)=2sin(2x-$\frac{π}{4}$)的图象向左平移$\frac{π}{4}$个单位,得到函数g(x)的图象,则g(0)=(  )
A.$\sqrt{2}$B.2C.0D.-$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.某校为了解一段时间内学生“学习习惯养成教育”情况,随机抽取了100名学生进行测试,用“十分制”记录他们的测试成绩,若所得分数不低于8分,则称该学生“学习习惯良好”,学生得分情况统计如表:
 分数[6.0,7.0)[7.0,8.0)[8.0,9.0)[9.0,10.0]
 频数 1015  5025 
(1)请在答题卡上完成学生得分的频率分布直方图,并估计学生得分的平均分$\overline{x}$(同一组中的数据用该区间的中点值作代表);
(2)若用样本去估计总体的分布,请对本次“学习习惯养成教育活动”作出评价.

查看答案和解析>>

科目: 来源: 题型:选择题

9.下列函数中既是奇函数又在区间(-1,1)上单调递减的是(  )
A.y=sinxB.y=-|x+1|C.y=ln$\frac{1-x}{1+x}$D.y=$\frac{1}{2}$(ex+e-x

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b≥1})$的离心率$\frac{{\sqrt{2}}}{2}$,其右焦点到直线2ax+by-$\sqrt{2}$=0的距离为$\frac{{\sqrt{2}}}{3}$.
(I)求椭圆C1的方程;
(Ⅱ)过点P$({0,-\frac{1}{3}})$的直线l交椭圆C1于A、B两点.
(i)证明:线段AB的中点G恒在椭圆C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1的内部;
(ii)判断以AB为直径的圆是否恒过定点?若是,求出该定点坐标;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

7.用反证法证明命题“设a,b是实数,则方程x3+ax+b=0至少有一个实根”时,要做的反设是(4)(填序号)
(1)方程x3+ax+b=0恰好有两个实根   (2)方程x3+ax+b=0至多有一个实根
(3)方程x3+ax+b=0至多有两个实根   (4)方程x3+ax+b=0没有实根.

查看答案和解析>>

科目: 来源: 题型:解答题

6.在直角坐标系xOy中,圆x2+y2=4上一点P(x0,y0)(x0y0>0)处的切线l分别交x轴、y轴于点A,B,以A,B为顶点且以O为中心的椭圆记作C,直线OP交C于M,N两点.
(Ⅰ)若P点坐标为($\sqrt{3}$,1),求椭圆C的离心率;
(Ⅱ)证明|MN|<4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)的定义域为(0,+∞),若y=$\frac{f(x)}{x}$在(0,+∞)上为增函数,则称f(x)为“一阶比增函数”;若y=$\frac{f(x)}{{x}^{2}}$在(0,+∞)上增函数,则称f(x)为“二阶比增函数”.
我们把所有“一阶比增函数”组成的集合记为A,所有“二阶比增函数”组成的集合记为B.
(1)设函数f(x)=ax3-2(a-2)x2+(a-1)x(x>0,a∈R)
①求证:当a=0时,f(x)∈A∩B;
②若f(x)∈A,且f(x)∉B,求实数a的取值范围.
(2)对定义在(0,+∞)上的函数f(x),若f(x)∈B,且存在常数k使得?x∈(0,+∞),f(x)<k,求证:f(x)<0.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xOy中,动点P到定点F(1,0)的距离和它到定直线x=2的距离比是$\frac{\sqrt{2}}{2}$.
(1)求动点P的轨迹C的方程;
(2)设过点Q($\frac{\sqrt{2}}{3}$,0)的直线l与曲线C交于点M,N,求证:点A($\sqrt{2}$,0)在以MN为直经的圆上.

查看答案和解析>>

同步练习册答案