相关习题
 0  228586  228594  228600  228604  228610  228612  228616  228622  228624  228630  228636  228640  228642  228646  228652  228654  228660  228664  228666  228670  228672  228676  228678  228680  228681  228682  228684  228685  228686  228688  228690  228694  228696  228700  228702  228706  228712  228714  228720  228724  228726  228730  228736  228742  228744  228750  228754  228756  228762  228766  228772  228780  266669 

科目: 来源: 题型:选择题

3.设f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(3-x),x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,则f(2015)=(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

2.下列函数中,最小正周期为π的偶函数是(  )
A.y=cos(2x+$\frac{π}{2}$)B.y=cos$\frac{x}{2}$C.y=sin(2x-$\frac{π}{2}$)D.y=tanx

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C1、抛物线C2的焦点均在x轴上,且椭圆C1的中心和抛物线C2的顶点均为原点O,从椭圆C1上取两个点.抛物线C2上取一个点.将其坐标记录于表中:
 x 3-2 $\sqrt{2}$
 y-2$\sqrt{3}$ 0 $\frac{\sqrt{6}}{2}$
(Ⅰ)求椭圆C1和抛物线C2的标准方程:
(Ⅱ)直线l:y=kx+m(k≠0)与椭圆C1交于不同的两点M、N.
(i)若线段MN的垂直平分线过点G($\frac{1}{8}$,0),求实数k的取值范围.
(ii)在满足(i)的条件下,且有m≠=1,求△OMN的面积S△OMN

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知α∈(0,$\frac{π}{2}$),且cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,则sinα=$\frac{{7\sqrt{2}}}{26}$.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知f(x)=x2+2x,则f′(2)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目: 来源: 题型:填空题

18.用反证法证明某命题时,对结论“自然数a,b,c至少有1个奇数”的正确假设为“假设自然数a,b,c没有奇数或全是偶数”

查看答案和解析>>

科目: 来源: 题型:解答题

17.数列{an}中,定义:dn=an+2+an-2an+1(n≥1),a1=1.
(Ⅰ)若dn=an,a2=2,求an
(Ⅱ) 若a2=-2,dn≥1,求证此数列满足an≥-5(n∈N*);
(Ⅲ)若|dn|=1,a2=1且数列{an}的周期为4,即an+4=an(n≥1),写出所有符合条件的{dn}.

查看答案和解析>>

科目: 来源: 题型:填空题

16.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为0.4;这20名工人中一天生产该产品数量在[55,75)的人数是13.

查看答案和解析>>

科目: 来源: 题型:选择题

15.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:
优惠劵1:若标价超过50元,则付款时减免标价的10%;
优惠劵2:若标价超过100元,则付款时减免20元;
优惠劵3:若标价超过100元,则超过100元的部分减免18%.
若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为(  )
A.179元B.199元C.219元D.239元

查看答案和解析>>

科目: 来源: 题型:选择题

14.同时具有性质:
①最小正周期是π;
②图象关于直线x=$\frac{π}{3}$对称;
③在区间$[{\frac{5π}{6},π}]$上是单调递增函数”的一个函数可以是(  )
A.$y=cos(\frac{x}{2}+\frac{π}{6})$B.$y=sin(2x+\frac{5π}{6})$C.$y=cos(2x-\frac{π}{3})$D.$y=sin(2x-\frac{π}{6})$

查看答案和解析>>

同步练习册答案