相关习题
 0  228644  228652  228658  228662  228668  228670  228674  228680  228682  228688  228694  228698  228700  228704  228710  228712  228718  228722  228724  228728  228730  228734  228736  228738  228739  228740  228742  228743  228744  228746  228748  228752  228754  228758  228760  228764  228770  228772  228778  228782  228784  228788  228794  228800  228802  228808  228812  228814  228820  228824  228830  228838  266669 

科目: 来源: 题型:选择题

11.命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos2θ.”该过程应用了(  )
A.分析法B.综合法C.间接证明法D.反证法

查看答案和解析>>

科目: 来源: 题型:选择题

10.欲证$\sqrt{7}$-1>$\sqrt{11}$-$\sqrt{5}$,只需证(  )
A.${(\sqrt{7}-1)^2}>{(\sqrt{11}-\sqrt{5})^2}$B.${(\sqrt{7}+1)^2}>{(\sqrt{11}+\sqrt{5})^2}$C.${(\sqrt{7}+\sqrt{5})^2}>{(\sqrt{11}+1)^2}$D.${(\sqrt{7}-\sqrt{5})^2}>{(\sqrt{11}-1)^2}$

查看答案和解析>>

科目: 来源: 题型:解答题

9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+t}\\{y=t-3}\end{array}}\right.$(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为$ρ=\frac{2cosθ}{{{{sin}^2}θ}}$.
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若直线l与曲线C相交于A、B两点,求弦AB的长.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若复数z=(cosθ-$\frac{4}{5}$)+(sinθ-$\frac{3}{5}$)i是纯虚数(i为虚数单位),则tan(θ-$\frac{π}{4}$)的值为(  )
A.7B.$-\frac{1}{7}$C.-7D.-7或$-\frac{1}{7}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.函数f(x)=x-$\frac{9}{2-2x}$(x>1)的最小值是3$\sqrt{2}$+1.

查看答案和解析>>

科目: 来源: 题型:选择题

6.设a>0,b>0,A(1,-2),B(a,-1),C(-b,0),若A,B,C三点共线,则$\frac{2}{a}+\frac{1}{b}$的最小值是(  )
A.3+2$\sqrt{2}$B.4$\sqrt{2}$C.6D.9

查看答案和解析>>

科目: 来源: 题型:解答题

5.不等式|x-$\frac{1}{4}$|≤$\frac{1}{12}$的解集为{x|n≤x≤m}
(1)求实数m,n;
(2)若实数a,b满足:|a+b|<m,|2a-b|<n,求证:|b|<$\frac{5}{18}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.点M(-1,2,-3)关于原点的对称点是(1,-2,3).

查看答案和解析>>

科目: 来源: 题型:填空题

3.阅读如图所示的流程图,运行相应的程序,则输出S的值为26.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知实数a,b,c,d满足$\frac{{a-3{e^a}}}{b}=\frac{3-2c}{d-4}$=1(e是自然对数的底数),则(a-c)2+(b-d)2的最小值为20.

查看答案和解析>>

同步练习册答案