相关习题
 0  228692  228700  228706  228710  228716  228718  228722  228728  228730  228736  228742  228746  228748  228752  228758  228760  228766  228770  228772  228776  228778  228782  228784  228786  228787  228788  228790  228791  228792  228794  228796  228800  228802  228806  228808  228812  228818  228820  228826  228830  228832  228836  228842  228848  228850  228856  228860  228862  228868  228872  228878  228886  266669 

科目: 来源: 题型:选择题

5.在平面几何中有正确的结论,已知一个正三角形的内切圆面积为S1,外接圆面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$=$\frac{1}{4}$,类比上述结论推理,在空间中,已知一个正四面体的内切球体积为V1,外接球体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{8}$C.$\frac{1}{16}$D.$\frac{1}{27}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,AB是圆柱的直径且AB=2,PA是圆柱的母线且PA=2,点C是圆柱底面圆周上的点.
(1)求圆柱的侧面积和体积;
(2)求三棱锥P-ABC体积的最大值;
(3)若AC=1,D是PB的中点,点E在线段PA上,求CE+ED的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.在△ABC中,若A=30°,$a=\sqrt{3}$,则$\frac{a+b+c}{sinA+sinB+sinC}$=2$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知首项为1的正项数列{an}满足an+12+an2<$\frac{5}{2}{a_{n+1}}{a_n}$,n∈N*,Sn为数列{an}的前n项和.
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范围;
(2)设数列{an}是公比为q的等比数列,若$\frac{1}{2}{S_n}$<Sn+1<2Sn,n∈N*,求q的取值范围;
(3)若a1,a2,…,ak(k≥3)成等差数列,且a1+a2+…+ak=120,求正整数k的最小值,以及k取最小值时相应数列a1,a2,…,ak

查看答案和解析>>

科目: 来源: 题型:选择题

1.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:
x 11 10.5 10 9.5 9
y 5 6 8 1010
根据上表得回归直线方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=-3.2,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$$\overline{x}$,据此回归方程估计零售价为5元时销售量估计为(  )
A.16个B.20个C.24个D.28个

查看答案和解析>>

科目: 来源: 题型:解答题

20.某火锅店为了了解气温对营业额的影响,随机记录了该店1月份中5天的日营业额y(单位:千元)与该地当日最低气温x(单位:℃)的数据,如表:
x258911
y1210887
(Ⅰ)求y关于x的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)判定y与x之间是正相关还是负相关;若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额.
(Ⅲ)设该地1月份的日最低气温X~N(μ,δ2),其中μ近似为样本平均数$\overline{x}$,δ2近似为样本方差s2,求P(3.8<X<13.4)
附:①回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$中,$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$.
②$\sqrt{10}$≈3.2,$\sqrt{3.2}$≈1.8.若X~N(μ,δ2),则P(μ-δ<X<μ+δ)=0.6826,P(μ-2δ<X<μ+2δ)=0.9544.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某品牌新款夏装即将上市,为了对夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店A店B店C店
售价x(元)808682888490
销售量y(件)887885758266
(1)以三家连锁店分别的平均售价和平均销量为散点,求出售价与销量的回归直线方程$\widehaty=\widehatbx+\widehata$;
(2)在大量投入市场后,销售量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该款夏装在销售上获得最大利润,该款夏装的单价应定为多少元(保留整数)?$\left\{\begin{array}{l}\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})}({{y_i}-\overline y})}}{{{{\sum_{i=1}^n{({{x_i}-\overline x})}}^2}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}\\ \widehata=\overline y-\widehatb\overline x\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

18.银川唐徕回民中学高二年级某次周考中(满分100分),理科A班五名同学的物理成绩如表所示:
学生A1A2A3A4A5
数学x8991939597
物理y8789899293
(1)请在如图直角坐标系中作出两组数据散点图,并判断正负相关;
(2)依据散点图说明物理成绩与数学成绩是否具有线性相关性,若有,求出线性回归直线方程;
(3)要从4名数学成绩高于90分以上的同学中选出2人参加大学先修课程的学习,求所选两人中至少有一人物理成绩高于90分的概率.
以下公式及数据供选择:
b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$
$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=41880;
$\sum_{i=1}^{5}{{x}_{i}}^{2}$=43285.

查看答案和解析>>

科目: 来源: 题型:解答题

17.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)广东李先生2016年1月购买一辆价值20万元的新车
      ①估计李先生购车时 的商业车险保费;
      ②若该车今年2月份已出过一次险,现在有被刮花了,李先生到汽车维修4S店询价,预计修车费用为800元,保险专家建议李先生自费(即不出险),你认为李先生是否应该接受建议?说明理由.(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

科目: 来源: 题型:解答题

16.从2016年1月1日起,广东、湖北等18个保监局所辖地区将纳入商业车险改革试点范围,其中最大的变化是上一年的出险次数决定了下一年的保费倍率,具体关系如表:
上一年出险次数012345次以上(含5次)
下一年保费倍率85%100%125%150%175%200%
连续两年没出险打7折,连续三年没出险打6折
经验表明新车商业险保费与购车价格有较强的线性关系,下面是随机采集的8组数据(x,y)(其中x(万元)表示购车价格,y(元)表示商业车险保费):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),设由着8组数据得到的回归直线方程为:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)有评估机构从以往购买了车险的车辆中随机抽取了1000辆调查,得到一年中出险次数的频数分布如下(并用相应频率估计2016年度出险次数的概率):
一年中出险的次数012345次以上(含5次)
频数5003801001541
广东李先生2016年1月购买一辆价值20万元的新车,根据以上信息,试估计该车辆在2017年1月续保时应缴的商业险保费(精确到元),并分析车险新政是否总体上减轻了车主负担,(假设车辆下一年与上一年都购买相同的商业车险产品进行续保)

查看答案和解析>>

同步练习册答案