相关习题
 0  228737  228745  228751  228755  228761  228763  228767  228773  228775  228781  228787  228791  228793  228797  228803  228805  228811  228815  228817  228821  228823  228827  228829  228831  228832  228833  228835  228836  228837  228839  228841  228845  228847  228851  228853  228857  228863  228865  228871  228875  228877  228881  228887  228893  228895  228901  228905  228907  228913  228917  228923  228931  266669 

科目: 来源: 题型:解答题

7.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点P(0,1),离心率e=$\frac{\sqrt{2}}{2}$,直线l:y=kx+m交椭圆于不同两点A,B
(Ⅰ)求椭圆方程;
(Ⅱ)若|PA|=|PB|,求△ABP面积的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共线的两个向量,$\overrightarrow{OA}$=x1$\overrightarrow{{e}_{1}}$+y1$\overrightarrow{{e}_{2}}$,$\overrightarrow{OB}$=x2$\overrightarrow{{e}_{1}}$+y2$\overrightarrow{{e}_{2}}$,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,则$\overrightarrow{OP}$等于(λx2-λx1+x1)$\overrightarrow{{e}_{1}}$+(λy2-λy1+y1)$\overrightarrow{{e}_{2}}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.已知数列{an}为正项等差数列,满足$\frac{1}{{a}_{1}}$+$\frac{4}{{a}_{2k-1}}$≤1(其中k∈N*,且k≥2),则ak的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,离心率为$\frac{\sqrt{6}}{3}$,点A,B分别是椭圆与x轴,y轴的交点,且原点O到AB的距离为$\frac{\sqrt{6}}{2}$.
(Ⅰ)求椭圆方程;
(Ⅱ)F是椭圆的右焦点,过F的直线l交椭圆于M,N两点,当直线l绕着点F转动过程中,试问在直线l′:x=3上是否存在点P,使得△PMN是以P为顶点的等腰直角三角形,若存在求出直线l的方程,不存在说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知数列{an}的前n项和为Sn,a1=2,对任意正整数m,n,都有Sm+n=SmSn,则{an}的通项公式为an=$\left\{\begin{array}{l}{2,n=1}\\{{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.设F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1的直线交椭圆E于A,B两点,AF1=3BF1
(Ⅰ)若AB=4,△ABF2的周长为16,求AF2
(Ⅱ)若cos∠AF2B=$\frac{3}{5}$,求椭圆E的离心率.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心,右焦点和右顶点分别为O,F,A,右准线与x轴的交点为H,则$\frac{FA}{OH}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

20.若椭圆9x2+25y2=225上一点M到焦点F1的距离为2,N是MF1的中点,O为坐标原点,则ON=4.

查看答案和解析>>

科目: 来源: 题型:解答题

19.某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售.已知编制一只花篮需要铜丝200米,铁丝300米;编制一只花盆需要铜丝100米,铁丝300米.设该厂用所有原料编制x个花篮,y个花盆.
(1)列出x、y满足的关系式,并画出相应的平面区域;
(2)若出售一个花篮可获利300元,出售一个花盆可获利200元,那么怎样安排花篮和花盆的编制个数,可使所得利润最大,最大利润是多少?

查看答案和解析>>

科目: 来源: 题型:填空题

18.在△ABC中,∠BAC=90°,AB=1,AC=2,$\overrightarrow{BD}$=$\frac{1}{3}$$\overrightarrow{BC}$,$\overrightarrow{AE}$=$\frac{1}{3}$$\overrightarrow{AB}$,DE的延长线交CA的延长线于点F,则$\overrightarrow{AD}$•$\overrightarrow{AF}$的值为$-\frac{4}{9}$.

查看答案和解析>>

同步练习册答案