相关习题
 0  228738  228746  228752  228756  228762  228764  228768  228774  228776  228782  228788  228792  228794  228798  228804  228806  228812  228816  228818  228822  228824  228828  228830  228832  228833  228834  228836  228837  228838  228840  228842  228846  228848  228852  228854  228858  228864  228866  228872  228876  228878  228882  228888  228894  228896  228902  228906  228908  228914  228918  228924  228932  266669 

科目: 来源: 题型:解答题

17.求焦点在x轴上,过点M(6,2),且满足a=3b的椭圆的标准方程.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{10}$,且$\overrightarrow{b}$•$\overrightarrow{c}$=$5\sqrt{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知数列{an}满足a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,求a3,a4,a5,a6的值及数列{an}的通项公式.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆C;$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,过左焦点F1的直线与椭圆C相交于A,B两点,弦AB的中点坐标为(-$\frac{4}{7}$,$\frac{3}{7}$)
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C长轴的左、右两端点分别为D,E,点P为椭圆上异于D,E的动点,直线l:x=-4与直线PD,PE分别交于M,N两点,试问△F1MN的外接圆是否恒过x轴上不同于点F1的定点?若经过,求出定点坐标;若不经过,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,点B(0,$\sqrt{3}$)是椭圆E的上顶点,F1,F2分别是椭圆E的左、右焦点.
(1)求椭圆E的方程;
(2)已知M为椭圆E上的动点,若以点M为圆心,MF1为半径的圆与椭圆E的右准线有公共点,求△F1MF2面积的最大值;
(3)过点B作直线l1,l2,使l1⊥l2,设直线l1,l2分别交椭圆E于点P,Q,连接PQ,求证:直线PQ必经过y轴上的一个定点.

查看答案和解析>>

科目: 来源: 题型:填空题

12.m变化时,两平行线3x-4y+m-1=0和3x一4y+m2=0之间距离的最小值等于$\frac{3}{20}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知:函数g(x)=x2-2x+1.设函数f(x)=$\frac{g(x)}{x}$
(1)若不等式f(2x)-k•2x≥0在x∈[-1,1]时恒成立,求实数k的取值范围;
(2)如果关于x的方程f(|2x-1|)+t•($\frac{4}{|{2}^{x}-1|}$-3)=0有三个相异的实数根,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知数列{an}的前n项和公式为Sn=4an+2,求an

查看答案和解析>>

科目: 来源: 题型:填空题

9.若|$\overrightarrow{AB}$|=1,若|$\overrightarrow{CA}$|=2|$\overrightarrow{CB}$|,则$\overrightarrow{CA}$•$\overrightarrow{CB}$的最大值为2.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知点P是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上一点,F1、F2是椭圆的两个焦点,若|PF1|=4,则|PF2|=2.

查看答案和解析>>

同步练习册答案