相关习题
 0  228840  228848  228854  228858  228864  228866  228870  228876  228878  228884  228890  228894  228896  228900  228906  228908  228914  228918  228920  228924  228926  228930  228932  228934  228935  228936  228938  228939  228940  228942  228944  228948  228950  228954  228956  228960  228966  228968  228974  228978  228980  228984  228990  228996  228998  229004  229008  229010  229016  229020  229026  229034  266669 

科目: 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,已知a1=a,an+1=Sn+3n,n∈N*
(1)设bn=Sn-3n,求数列{bn}的通项公式;
(2)若an+1≥an,n∈N*,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.下列调查:
①每隔5年进行人口普查;
②报社进行舆论调查;
③灯泡使用寿命的调查;
④对入学报名者的学历检查;
⑤从20台电视机中抽出3台进行质量检查,
其中适合用抽样调查的是(  )
A.①②③B.②③⑤C.②③④D.①③⑤

查看答案和解析>>

科目: 来源: 题型:选择题

19.若复数z满足2z-$\overline{z}$=$\frac{2i-3}{i}$(i为虚数单位),则|z|=(  )
A.$\sqrt{5}$B.5C.$\sqrt{13}$D.13

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知sinα-cosβ<1,则(sinα-1)2+(cosβ+1)2的取值范围是($\frac{1}{2}$,8].

查看答案和解析>>

科目: 来源: 题型:选择题

17.若直线2mx-ny-2=0(m>0,n>0)过点(1,-2),则$\frac{1}{m}$+$\frac{2}{n}$最小值(  )
A.2B.6C.12D.3+2$\sqrt{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

16.设偶函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,△KLM为等腰直角三角形,∠KML=90°,KL=1,则f($\frac{1}{12}$)的值为(  )
A.$\frac{\sqrt{6}-\sqrt{2}}{8}$B.$\frac{\sqrt{2}+\sqrt{6}}{8}$C.$\frac{1}{4}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

15.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,直线y=x与椭圆C交于点E,F,直线y=-x与椭圆C交于点G,H,且四边形EHFG的面积为$\frac{16}{5}$.
(1)求椭圆C的方程;
(2)过椭圆C的左顶点A作直线l1交椭圆C于另一点P,过点A作垂直于l1的直线l1,l2交椭圆C于另一点Q,当直线l1的斜率变化时,直线PQ是否过x轴上的一定点?若过定点,求出该定点的坐标,若不过定点,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

14.在平面直角坐标系中,定义两点A(xA,yA),B(xB,yB)间的“L-距离”为d(A-B)=|xA-xB|+|yA-yB|.现将边长为1的正三角形按如图所示方式放置,其中顶点A与坐标原点重合,记边AB所在的直线斜率为k(0≤k≤$\sqrt{3}$),则d(B-C)取得最大值时,边AB所在直线的斜率为2-$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.某单位工作人员的构成如图所示,现采用分层抽样的方法抽取工作人员进行薪资情况调查,若管理人员抽取了6人,则抽到的教师人数为9.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点为F1,F2,M为椭圆C短轴的一个端点,N为椭圆上的点|NF1|max=2$\sqrt{2}$+2,△MF1F2为等腰直角三角形.
(1)求椭圆C的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,若kAC•kBD=-$\frac{{b}^{2}}{{a}^{2}}$.
①求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最值;
②求证:四边形ABCD的面积为定值.

查看答案和解析>>

同步练习册答案