相关习题
 0  228949  228957  228963  228967  228973  228975  228979  228985  228987  228993  228999  229003  229005  229009  229015  229017  229023  229027  229029  229033  229035  229039  229041  229043  229044  229045  229047  229048  229049  229051  229053  229057  229059  229063  229065  229069  229075  229077  229083  229087  229089  229093  229099  229105  229107  229113  229117  229119  229125  229129  229135  229143  266669 

科目: 来源: 题型:填空题

18.从1,2,3,…,n中这n个数中取m(m,n∈N*,3≤m≤n)个数组成递增等差数列,所有可能的递增等差数列的个数记为f(n,m),则f(20,5)等于40.

查看答案和解析>>

科目: 来源: 题型:选择题

17.某商场2015年一月份到十二月份月销售额呈现先下降后上升的趋势,下列四个函数中,能较准确反映商场月销售额f(x)与月份x关系且满足f(1)=8,f(3)=2的函数为(  )
A.f(x)=20×($\frac{1}{2}$)xB.f(x)=-6log3x+8C.f(x)=x2-12x+19D.f(x)=x2-7x+14

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,已知ABCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别AC,AD是上的动点,且$\frac{AE}{AC}$=$\frac{AF}{AD}$=λ(0<λ<1).
(Ⅰ)求证:不论λ为何值,总有EF⊥平面ABC;
(Ⅱ)若三棱锥A-BEF的体积为$\frac{{\sqrt{6}}}{12}$,求此时λ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列命题中为真命题的是(  )
A.若命题p:“?x∈R,x2-x-1>0,则命题p的否定为:“?x∈R,x2-x-1≤0”
B.“a=1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件
C.若x≠0,则x+$\frac{1}{x}$≥2
D.直线a,b,为异面直线的充要条件是直线a,b不相交

查看答案和解析>>

科目: 来源: 题型:选择题

14.某中学学生社团活动迅猛发展,高一新生中的五名同学打算参加“清净了文学社”、“科技社”、“十年国学社”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团,且同学甲不参加“围棋苑”,则不同的参加方法的种数为(  )
A.72B.108C.180D.216

查看答案和解析>>

科目: 来源: 题型:选择题

13.给出下列四个结论:
①“若am2<bm2,则a<b”的逆命题是真命题;
②若x,y∈R,则“x≥2或y≥2”是“x2+y2≥4”的充分不必要条件;
③函数y=loga(x+1)+1(a>0且a≠0)的图象必过点(0,1);
④已知ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,则P(ξ>2)=0.2.
其中正确的结论是(  )
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目: 来源: 题型:选择题

12.设集合P={(x,y)||x|+|y|≤1,x∈R,y∈R},Q={(x,y)|x2+y2≤1,x∈R,y∈R},R={(x,y)|x4+y2≤1,x∈R,y∈R}则下列判断正确的是(  )
A.P?Q?RB.P?R?QC.Q?P?RD.R?P?Q

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,三棱锥S-ABC中,已知SA⊥BC,SA=BC=a,SA⊥DE,BC⊥DE,且DE=b,求三棱锥S-ABC的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知数列{an}是等比数列,其中a3=2,a6=16,则该数列的公比q等于(  )
A.$\frac{14}{3}$B.2C.4D.8

查看答案和解析>>

科目: 来源: 题型:解答题

9.某家父母记录了女儿玥玥的年龄(岁)和身高(单位cm)的数据如下:
年龄x 6 7 8
 身高y 118 126 136144
(1)试求y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)试预测玥玥10岁时的身高.(其中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

同步练习册答案