相关习题
 0  228960  228968  228974  228978  228984  228986  228990  228996  228998  229004  229010  229014  229016  229020  229026  229028  229034  229038  229040  229044  229046  229050  229052  229054  229055  229056  229058  229059  229060  229062  229064  229068  229070  229074  229076  229080  229086  229088  229094  229098  229100  229104  229110  229116  229118  229124  229128  229130  229136  229140  229146  229154  266669 

科目: 来源: 题型:填空题

12.如图为四棱锥P-ABCD的表面展开图,四边形ABCD为矩形,$AB=\sqrt{2}$,AD=1.已知顶点P在底面ABCD上的射影为点A,四棱锥的高为$\sqrt{2}$,则在四棱锥P-ABCD中,PC与平面ABCD所成角的正切值为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

11.若图所示,将若干个点摆成三角形图案,每条边(包括两个端点)n(n>1,n∈N*)个点,相应的图案中总的点数记为an,则$\frac{9}{{a}_{2}{a}_{3}}$+$\frac{9}{{a}_{3}{a}_{4}}$+$\frac{9}{{a}_{4}{a}_{5}}$+…+$\frac{9}{{a}_{2015}{a}_{2016}}$=$\frac{2014}{2015}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.直三棱柱ABC-A1B1C1中,AB=AA1,$∠CAB=\frac{π}{2}$.
(Ⅰ)AB∥平面A1B1C;
(Ⅱ)证明CB1⊥BA1
(Ⅲ)已知$AB=2,BC=\sqrt{5}$,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在矩形ABCD中,AB=2AD=2.M为CD的中点.将△ADM沿AM折起,使得平面ADM⊥平面ABCM.点O是线段AM的中点.
(Ⅰ)求证:平面DOB⊥平面ABCM;
(Ⅱ)求三棱锥C-DMB的体积;
(Ⅲ)过D点是否存在一条直线l,同时满足以下两个条件:①l?平面BCD;②l∥AM.请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,四边形ABCD为矩形,△PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E、F分别为PC、AB的中点
(Ⅰ)证明:EF∥平面PAD;
(Ⅱ)证明:PA⊥平面PCD;
(Ⅲ)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在正六棱锥P-ABCDEF中,AB=1,若平面PAB⊥平面PDE,则PA=$\frac{{\sqrt{7}}}{2}$,该正六棱锥的体积是$\frac{3}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为$\frac{{\sqrt{6}}}{4}$.
(Ⅰ)若F是线段CD的中点,证明:EF⊥面DBC;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

5.若长方体的一个顶点上三条棱长分别是1、1、2,且它的八个顶点都在同一球面上,则这个球的体积是(  )
A.B.$\sqrt{6}π$C.D.12π

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图所示,在直三棱柱ABO-A′B′O′中,OO′=4,OA=4,OB=3,∠AOB=90°,D是线段A′B′的中点,P是侧棱BB′上的一点,若OP⊥BD,求OP与底面AOB所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.正方形ABCD的边长为a,PA⊥平面ABCD,PA=a,则直线PB与平面PAC所成的角为30°.

查看答案和解析>>

同步练习册答案