相关习题
 0  228961  228969  228975  228979  228985  228987  228991  228997  228999  229005  229011  229015  229017  229021  229027  229029  229035  229039  229041  229045  229047  229051  229053  229055  229056  229057  229059  229060  229061  229063  229065  229069  229071  229075  229077  229081  229087  229089  229095  229099  229101  229105  229111  229117  229119  229125  229129  229131  229137  229141  229147  229155  266669 

科目: 来源: 题型:解答题

2.如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8,BC是⊙O的直径,AB=AC=6,OE∥AD 
(1)求二面角B-AD-F的大小;
(2)求直线BD与EF所成的角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知正三棱柱ABC-A1B1C1的体积为$\frac{{9\sqrt{3}}}{4}$,底面边长为3,若O为底面A1B1C1的中心,则OA与平面ABC所成角的大小为$\frac{π}{6}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.棱长为a的正四面体的外接球和内切球的体积比是(  )
A.9:1B.4:1C.27:1D.8:1

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E,F分别是AB,PC的中点,设AC中点为O,若∠PDA=45°,则EF与平面ABCD所成的角的大小为45°.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知某厂的产量x吨与能耗y吨的机组对应数据:
x3456
y2.5m44.5
由以上数据求出线性回归方程为y=0.35+0.7x,那么表中m的值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知某一起的使用年限x(年)和其维修费用y(万元)的统计数据;
使用年限x12345
维修费用y1.32.54.05.66.6
由散点图知y对x具有线性相关关系,利用线性回归方程估计使用年限为10年时,维修费用为(  )万元.
A.12.86B.13.38C.13.59D.15.02

查看答案和解析>>

科目: 来源: 题型:选择题

16.某地政府决定用同规格大理石建一堵七层的护墙,各层用该种大理石块数是:第一层用全部大理石的一半多一块,第二层用剩下的一半多一块,第三层…以此类推,到第七层恰好将大理石用完,则共需该种大理石(  )
A.128块B.126块C.64块D.62块

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=2,BC=2$\sqrt{2}$,M,N分别是CC1,BC的中点,点P在直线A1B1上,且$\overrightarrow{{A_1}P}=λ\overrightarrow{{A_1}{B_1}}$.
(Ⅰ)证明:无论λ取何值,总有AM⊥PN;
(Ⅱ)当λ取何值时,直线PN与平面ABC所成的角θ最大?并求该角取最大值时的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.下表是种产品销售收入与销售量之间的一组数据:
销售量x(吨)2356
销售收入y(千元)78912
(1)求出回归直线方程;
(2)根据回归方程估计销售量为7吨时的销售收入.
参考数据:2×7+3×8+5×9+6×12=155,$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.在三棱锥P-ABC中,PA⊥平面ABC,△ABC为正三角形,D,E分别为BC,CA的中点.
(1)在BC上求做一点F,使AD∥平面PEF,并证明你的结论;
(2)设AB=PA=2,对于(1)中的点F,求三棱锥B-PEF的体积.

查看答案和解析>>

同步练习册答案