相关习题
 0  228971  228979  228985  228989  228995  228997  229001  229007  229009  229015  229021  229025  229027  229031  229037  229039  229045  229049  229051  229055  229057  229061  229063  229065  229066  229067  229069  229070  229071  229073  229075  229079  229081  229085  229087  229091  229097  229099  229105  229109  229111  229115  229121  229127  229129  229135  229139  229141  229147  229151  229157  229165  266669 

科目: 来源: 题型:选择题

2.若函数f(x)=e2x+ax(e为自然对数的底数)的图象在x=0处的切线与直线2x+y-3=0平行,则实数a的值为(  )
A.1B.0C.-3D.-4

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)证明:CM⊥SB;
(Ⅱ)设三棱锥C-SBM与四棱锥S-ABCD的体积分别为V1与V,求$\frac{{V}_{1}}{V}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=-x3+3x2+9x+1.
(1)求f(x)的单调递减区间;
(2)求f(x)在点(-2,f(-2))处的切线方程.

查看答案和解析>>

科目: 来源: 题型:解答题

19.用数字0,1,2,3,4,5组成没有重复数字的五位数,求其中比40000大的偶数的个数.

查看答案和解析>>

科目: 来源: 题型:填空题

18.100件产品中有3件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是$\frac{97}{99}$.

查看答案和解析>>

科目: 来源: 题型:填空题

17.一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,圆锥圆锥底面面积是这个球面面积的$\frac{3}{16}$,设球的半径为R,圆锥底面半径为r.则两个圆锥的体积之和与球的体积之比为$\frac{3}{8}$.

查看答案和解析>>

科目: 来源: 题型:填空题

16.在正三棱锥S-ABC中,M是SC的中点,且AM⊥SB,底面边长AB=2$\sqrt{2}$,则正三棱锥S-ABC的体积为$\frac{4}{3}$,其外接球的表面积为12π.

查看答案和解析>>

科目: 来源: 题型:填空题

15.在△ABC中,CA=2,CB=6,∠ACB=60°.若点O在∠ACB的角平分线上,满足$\overrightarrow{OC}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$,m,n∈R,且-$\frac{1}{4}$≤n≤-$\frac{1}{20}$,则|$\overrightarrow{OC}$|的取值范围是[$\frac{\sqrt{3}}{4}$,$\frac{3\sqrt{3}}{4}$].

查看答案和解析>>

科目: 来源: 题型:填空题

14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:A1(x1,y1),A2(x2,y2),…,A6(x6,y6)的横、纵坐标分别对应数列{an}(n∈N*)的前12项,(即横坐标为奇数项,纵坐标为偶数项),如表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此规律下去,则a15=-4,a2016=1008.

查看答案和解析>>

科目: 来源: 题型:解答题

13.通过市场调查,得到某种产品的资金投入x(万元)与获得的利润y(万元)的数据,如表所示:
资金投入x23456
利润y23569
(Ⅰ)画出数据对应的散点图;
(Ⅱ)根据上表提供的数据,用最小二乘法求线性回归直线方程$\stackrel{∧}{y}$=bx+a;
(Ⅲ)现投入资金10万元,求获得利润的估计值为多少万元?
(参考公式:$\left\{\begin{array}{l}{\stackrel{∧}{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}(x-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\stackrel{∧}{a}=\stackrel{∧}{y}-b\stackrel{∧}{x}}\end{array}\right.$)

查看答案和解析>>

同步练习册答案