相关习题
 0  228973  228981  228987  228991  228997  228999  229003  229009  229011  229017  229023  229027  229029  229033  229039  229041  229047  229051  229053  229057  229059  229063  229065  229067  229068  229069  229071  229072  229073  229075  229077  229081  229083  229087  229089  229093  229099  229101  229107  229111  229113  229117  229123  229129  229131  229137  229141  229143  229149  229153  229159  229167  266669 

科目: 来源: 题型:解答题

2.从某种设备中随机抽取5个,获得使用年限 xi(年)与所支出的修理费用 yi(万元)的数据资料,算得
$\sum_{i=1}^{5}$xi=20,$\sum_{i=1}^{5}$yi=25,$\sum_{i=1}^{5}$xiyi=112.3,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=90
(1)求回归方程$\widehat{y}$=bx+a;
(2)判断变量 x与 y之间是正相关还是负相关;
(3)估计使用年限为10年时维修费用是多少.
附:回归直线的斜率和截距的最小二乘估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-bx
其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.设a>b>1,c<0给出下列三个结论:
①$\frac{c}{a}$>$\frac{c}{b}$;②ac<bc;③logb(a-c)>loga(b-c);④aln(-c)>bln(-c).
其中所有正确命题的序号是①②③.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设a,b,c∈R,且a>b,则(  )
A.a3>b3B.a2>b2C.$\frac{1}{a}$<$\frac{1}{b}$D.ac>bc

查看答案和解析>>

科目: 来源: 题型:填空题

19.下列四个数中,正数的个数是①④.
①$\frac{b+m}{a+m}$-$\frac{b}{a}$,a>b>0,m>0;
②($\sqrt{n+3}$+$\sqrt{n}$)-($\sqrt{n+2}$+$\sqrt{n+1}$),n∈N*
③2(a2+b2)-(a+b)2,a,b∈R;
④$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$-2,x∈R.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知长为2的线段AB的两个端点A和B分别在x轴和y轴上滑动,点M为线段AB的中点,点O为坐标原点.
(Ⅰ)求点M的轨迹方程;
(Ⅱ)若直线l:y=2x+b与点M的轨迹有两个不同的交点C,D,且点O在以线段CD为直径的圆外,求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如表提供了某厂生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x246810
y565910
(Ⅰ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;
(Ⅱ)根据(1)求出的线性回归方程,预测生产20吨甲产品的生产能耗是多少吨标准煤?
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,参考数值:2×5+4×6+6×5+8×9+10×10=236)

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知x,y的取值如表:
x0134
y2.24.34.86.7
根据如表可得回归方程为$\stackrel{∧}{y}$=0.95x+a,则a=(  )
A.3.25B.2.6C.2.2D.0

查看答案和解析>>

科目: 来源: 题型:选择题

15.某班主任对班级51名同学进行了作业量多少的调查,结合数据建立了一个2×2列联表:
认为作业多认为作业不多总计
喜欢玩电脑游戏181230
不喜欢玩电脑游戏51621
总计232851
(可能用到的公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}n_{+1}n_{+2}}$,可能用到的数据:P(X2≥6.635)=0.01,P(X2≥3.841)=0.05)参照以上公式和数据,得到的正确结论是(  )
A.有95%的把握认为喜欢玩电脑游戏与认为作业多少有关
B.有95%的把握认为喜欢玩电脑游戏与认为作业多少无关
C.有99%的把握认为喜欢玩电脑游戏与认为作业多少有关
D.有99%的把握认为喜欢玩电脑游戏与认为作业多少无关

查看答案和解析>>

科目: 来源: 题型:选择题

14.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:
气温x(℃)181310-1
用电量y(度)24343864
由表中数据得线性回归方程为$\stackrel{∧}{y}$=bx+a中b=-2,预测当气温为-3℃时,用电量的度数约为(  )
A.68B.67C.66D.65

查看答案和解析>>

科目: 来源: 题型:选择题

13.点P是曲线y=x2-lnx上任意一点,则点P到直线x-y+2=0的最短距离为(  )
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{2\sqrt{2}}}{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案