相关习题
 0  228977  228985  228991  228995  229001  229003  229007  229013  229015  229021  229027  229031  229033  229037  229043  229045  229051  229055  229057  229061  229063  229067  229069  229071  229072  229073  229075  229076  229077  229079  229081  229085  229087  229091  229093  229097  229103  229105  229111  229115  229117  229121  229127  229133  229135  229141  229145  229147  229153  229157  229163  229171  266669 

科目: 来源: 题型:选择题

2.在5双不同的鞋子中任取4只,这4只鞋子中至少有2只鞋子原来是同一双的可能取法种数为(  )
A.30B.90C.130D.140

查看答案和解析>>

科目: 来源: 题型:选择题

1.将5个颜色互不相同的球球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球球方法有(  )
A.60种B.30种C.25种D.20种

查看答案和解析>>

科目: 来源: 题型:选择题

20.函数f(x)=2lnx在x=2处切线的斜率为(  )
A.1B.2C.4D.2ln2

查看答案和解析>>

科目: 来源: 题型:填空题

19.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第10个数.

查看答案和解析>>

科目: 来源: 题型:选择题

18.《庄子•天下篇》中记述了一个著名命题:“一尺之锤,日取其半,万世不竭”.反映这个命题本质的式子是(  )
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$+…<2
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1

查看答案和解析>>

科目: 来源: 题型:选择题

17.盒子中有4只螺丝钉,其中有2只是坏的,现从盒中随机地抽取2个,那么$\frac{1}{6}$等于(  )
A.恰有1只是坏的概率B.2只都是坏的概率
C.恰有1只是好的概率D.至多1只是坏的概率

查看答案和解析>>

科目: 来源: 题型:解答题

16.(1)把4个不相同的球放入七个不相同的盒子,每个盒子至多有一个球的不同放法有多少种?
(2)把7个相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?
(3)把7个不相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?

查看答案和解析>>

科目: 来源: 题型:解答题

15.7名身高互不相等的学生,分别按下列要求排列,各有多少种不同的排法?
(1)7人站成一排,要求较高的3个学生站在一起;
(2)7人站成一排,要求较高的3个学生两两不相邻.
(3)7人站成一排,要求最高的站在中间,并向左、右两边看,身高逐个递减.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在4月份的30天都记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,从中随机挑选了5天进行分析研究,得到如表格:
日期4月1日4月7日4月15日4月21日4月30日
温差x/℃101113128
发芽数y/颗2325302616
(1)请根据4月7日、15日和21日的三天数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)若某天种子发芽率不低于$\frac{1}{4}$,则称该天种子发芽情况为“长势喜人”.根据表中5天的数据,以频率为概率,估计4月份的整体种子发芽情况.若在4月份中随机挑选3天,记“长势喜人”的天数为X,求X的分布列及数学期望.(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)

查看答案和解析>>

科目: 来源: 题型:解答题

13.某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数x与烧开一壶水所用时间y的一组数据,且做了一定的数据处理(如表),做出了散点图(如图).
$\overline x$$\overline y$$\overline w$$\sum_{i=1}^{10}{{{({x_i}-\overline x)}^2}}$$\sum_{i=1}^{10}{{{({w_i}-\overline w)}^2}}$$\sum_{i=1}^{10}{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^{10}{({w_i}-\overline w)}({y_i}-\overline y)$
1.4720.60.782.350.81-19.316.2
表中wi=$\frac{1}{x_i^2},\overline w=\frac{1}{10}\sum_{i=1}^{10}{w_i}$.
(1)根据散点图判断,y=a+bx与y=c+$\frac{d}{x^2}$哪一个更适宜作烧水时间y关于开关旋转角x的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立y关于x的回归方程;
(3)若旋转角x与单位时间内煤气输出量t成正比,那么x为多少时,烧开一壶水最省煤气?
附:对于一组数据(u1,v1),(u2,v2),(u3,v3),…,(un,vn),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为$\widehat{β}$=$\frac{\sum_{i=1}^{n}({v}_{i}-\overline{v})({u}_{i}-\overline{u})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$-$\widehat{β}$$\overline{u}$.

查看答案和解析>>

同步练习册答案