相关习题
 0  228986  228994  229000  229004  229010  229012  229016  229022  229024  229030  229036  229040  229042  229046  229052  229054  229060  229064  229066  229070  229072  229076  229078  229080  229081  229082  229084  229085  229086  229088  229090  229094  229096  229100  229102  229106  229112  229114  229120  229124  229126  229130  229136  229142  229144  229150  229154  229156  229162  229166  229172  229180  266669 

科目: 来源: 题型:解答题

12.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB.
(1)求证:平面BCE⊥平面CDE;
(2)若AB=1,求四棱锥C-ABED的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

11.如图所示,半径为1的球内切于正三棱锥P-ABC中,则此正三棱锥体积的最小值为8$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

10.高中数学联赛期间,某宾馆随机安排A、B、C、D、E五名男生入住3个标间(每个标间至多住2人),则A、B入住同一标间的概率为(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{3}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

9.如图所示,有一条长度为1的线段MN,其端点M,N在边长为3的正方形ABCD的四边上滑动,当点N绕着正方形的四边滑动一周时,MN的中点P所形成轨迹的长度为(  )
A.$8+\frac{π}{2}$B.8+πC.$12+\frac{π}{2}$D.12+π

查看答案和解析>>

科目: 来源: 题型:填空题

8.下列说法中正确的有:③④⑤.
①已知直线m,n与平面α,β,若m∥α,n⊥β,α⊥β,则m∥n;
②用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•3…(2n+1)(n∈N*),从n=k到n=k+1时,等式左边需乘的代数式是(2k+1)(2k+2);
③对命题“正三角形与其内切圆切于三边中点”可类比猜想:正四面体与其内切球切于各面中心;
④在判断两个变量y与x是否相关时,选择了3个不同的模型,它们的相关指数R2分别为:模型1为0.98,模型2为0.80,模型3为0.50.其中拟合效果最好的是模型1;
⑤在空间直角坐标系中,点A(1,2,1)关于y轴的对称点A′的坐标为(-1,2,-1).

查看答案和解析>>

科目: 来源: 题型:填空题

7.等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则使(n+1)Sn取最小值的n等于6或7.

查看答案和解析>>

科目: 来源: 题型:填空题

6.任取实数x,y∈[0,1],则满足$\frac{1}{2}$x≤y≤$\sqrt{x}$的概率为$\frac{5}{12}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知集合A={y|y=x+$\sqrt{x}$},B={-3,-1,2,4},则A∩B中元素的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,点E是线段BD的中点,点F是线段PD上的动点.
(1)求证:CE⊥BF;
(2)若AB=2,PD=3,当三棱锥P-BCF的体积等于$\frac{4}{3}$时,试判断点F在边PD上的位置,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设P为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一点,F1,F2为椭圆的焦点,|PF1|+|PF2|=4,离心率为$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)直线l:y=kx+m(m≠0)与椭圆交于P、Q两点,试问参数k和m满足什么条件时,直线OP,PQ,OQ的斜率依次成等比数列;
(Ⅲ)求△OPQ面积的取值范围.

查看答案和解析>>

同步练习册答案