相关习题
 0  228991  228999  229005  229009  229015  229017  229021  229027  229029  229035  229041  229045  229047  229051  229057  229059  229065  229069  229071  229075  229077  229081  229083  229085  229086  229087  229089  229090  229091  229093  229095  229099  229101  229105  229107  229111  229117  229119  229125  229129  229131  229135  229141  229147  229149  229155  229159  229161  229167  229171  229177  229185  266669 

科目: 来源: 题型:选择题

2.对任意的θ∈(0,$\frac{π}{2}$),不等式$\frac{1}{{{{sin}^2}θ}}$+$\frac{4}{{{{cos}^2}θ}}$≥|2x-1|恒成立,则实数x的取值范围是(  )
A.[-3,4]B.[0,2]C.$[{-\frac{3}{2},\frac{5}{2}}]$D.[-4,5]

查看答案和解析>>

科目: 来源: 题型:解答题

1.四边形ABCD为菱形,ACFE为平行四边形,且平面ACFE⊥平面ABCD,设BD与AC相交于点G,H为FG的中点,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求证:CH⊥平面BDF
(Ⅱ)求三棱锥B-DEF的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且asinB+$\sqrt{3}$acosB=$\sqrt{3}$c.
(Ⅰ)求角A的大小;
(Ⅱ)函数f(x)=5cos2(ωx+$\frac{A}{2}$)-3(ω>0),将y=f(x)图象的纵坐标不变,横坐标伸长到原来的$\frac{3}{2}$
倍后便得到函数y=g(x)的图象,若函数y=g(x)的最小正周期为π.当x∈[0,$\frac{π}{3}$]时,求函数f(x)值域.

查看答案和解析>>

科目: 来源: 题型:解答题

19.为调查某乡镇中心小学的学生每周平均体育运动时间的情况,收集了20位学生每周平均体育运动时间的样本数据(单位:小时).这20位学生每周平均体育运动时间的频率分布直方图如图所示,其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
(Ⅰ)求这些学生每周平均体育运动时间不超过6个小时的概率;
(Ⅱ)从这些学生每周平均体育运动时间超过6个小时的学生中任选2人,求这两名同学不在同一个分组区间的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系中,已知点A($\frac{1}{2}$,0),点B为直线x=-$\frac{1}{2}$上的动点,点C是线段AB与y轴的交点,点M满足$\overrightarrow{BM}$•$\overrightarrow{OC}$=0,$\overrightarrow{CM}$•$\overrightarrow{AB}$=0.
(1)求动点M的轨迹E的方程;
(2)设点P是轨迹E上的动点,点R、N在y轴上,圆(x-1)2+y2=1内切于△PRN,求△PRN的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.在△ABC中,角A,B,C的对边分别为a,b,c,$\sqrt{3}$asinB+bcosA=c.
(Ⅰ)求B;
(Ⅱ)若a=2$\sqrt{3}$c,S△ABC=2$\sqrt{3}$,求b.

查看答案和解析>>

科目: 来源: 题型:填空题

16.数列{an}的前n项和Sn满足3Sn=4n+1-4,则数列{(3n-2)an}的前n项和为(n-1)4n+1+4.

查看答案和解析>>

科目: 来源: 题型:选择题

15.定义域为[a,b]的函数y=f(x)图象的两个端点为A(a,f(a)),B(b,f(b)),M(x,y)是y=f(x)图象上任意一点,过点M作垂直于x轴的直线l交线段AB于点N(点M与点N可以重合),我们称|$\overrightarrow{MN}$|的最大值为该函数的“曲径”,下列定义域为[1,2]上的函数中,曲径最小的是(  )
A.y=x2B.y=$\frac{2}{x}$C.y=x-$\frac{1}{x}$D.y=sin$\frac{π}{3}$x

查看答案和解析>>

科目: 来源: 题型:填空题

14.某小区有排成一排的8个车位,现有5辆不同型号的轿车需要停放,则这5辆轿车停入车位后,剩余3个车位连在一起的概率为$\frac{3}{28}$(结果用最简分数表示).

查看答案和解析>>

科目: 来源: 题型:填空题

13.将3个相同的黑球和3个相同的白球自左向右排成一排,如果满足:从任何一个位置(含这个位置)自左向右开始数,数到最后一个球,如果黑球的个数不小于白球的个数,就称这种排列为“有效排列”,则出现“有效排列”的概率为$\frac{1}{4}$.

查看答案和解析>>

同步练习册答案