相关习题
 0  229013  229021  229027  229031  229037  229039  229043  229049  229051  229057  229063  229067  229069  229073  229079  229081  229087  229091  229093  229097  229099  229103  229105  229107  229108  229109  229111  229112  229113  229115  229117  229121  229123  229127  229129  229133  229139  229141  229147  229151  229153  229157  229163  229169  229171  229177  229181  229183  229189  229193  229199  229207  266669 

科目: 来源: 题型:选择题

19.已知正方体ABCD-A1B1C1D1,则AC与平面BDC1所成角的余弦值为(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

18.四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M分别为PA,BC的中点.
(1)证明:直线QM∥平面PCD;
(2)若二面角A-BD-Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知数列{an}是首项为a1=$\frac{1}{4}$,公比q=$\frac{1}{4}$的等比数列,设bn+2=3log${\;}_{\frac{1}{4}}$an(n∈N*),数列{cn}满足cn=an•bn.(Ⅰ)求数列{cn}的前n项和Sn
(Ⅱ)若cn≤$\frac{1}{4}$m2+m-1对一切正整数n恒成立,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数f(x)=|2x+1|.
(1)解不等式f(x)-f(x-1)≤1;
(2)若a>0,求证:f(ax)-af(x)≤f(-$\frac{1}{2}$a).

查看答案和解析>>

科目: 来源: 题型:解答题

15.试用你学到的证明方法求证:已知a>b>0,m>0,则$\frac{b+m}{a+m}>\frac{b}{a}$.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设a,b,c,d均为正数,且a-c=d-b,证明:
(Ⅰ)若ab>cd,则$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$;
(Ⅱ)$\sqrt{a}$+$\sqrt{b}$>$\sqrt{c}$+$\sqrt{d}$是|a-b|<|c-d|的充要条件.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知实数a、b满足:a>0,b>0.
(1)若x∈R,求证:|x+a|+|x-b|≥2$\sqrt{ab}$.
(2)若a+b=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{2}{ab}$≥12.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某卫视的大型娱乐节目现场,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否通过进入下一轮,甲、乙、丙三名老师都有“通过”“待定”“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任意一类票的概率均为$\frac{1}{3}$,且三人投票相互没有影响,若投票结果中至少有两张“通过”票,则该节目获得“通过”,否则该节目不能获得“通过”.
(I)求某节目的投票结果获“通过”的概率;
(Ⅱ)记某节目投票结果中所含“通过”和“待定”票票数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

11.随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件“ξ与η的取值恰好相等”,事件C发生的概率为p(C).
①当n=2时,求p(C);
②当n∈N*,n>2时,求p(C).

查看答案和解析>>

科目: 来源: 题型:解答题

10.一个袋子里装有编号为1,2,…,6的6个相同大小的小球,其中1到3号球是红色球,其余为黑色球.若从中任意摸出一个球,记录它的颜色和号码后再放回到袋子里,然后再摸出一个球,记录它的颜色和号码,求两次摸出的球都是红球,且至少有一个球的号码是偶数的概率.

查看答案和解析>>

同步练习册答案