相关习题
 0  229021  229029  229035  229039  229045  229047  229051  229057  229059  229065  229071  229075  229077  229081  229087  229089  229095  229099  229101  229105  229107  229111  229113  229115  229116  229117  229119  229120  229121  229123  229125  229129  229131  229135  229137  229141  229147  229149  229155  229159  229161  229165  229171  229177  229179  229185  229189  229191  229197  229201  229207  229215  266669 

科目: 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,若动点A在椭圆C上,动点B在直线y=$\frac{ab}{c}=\frac{{\sqrt{6}}}{2}$上.(c为椭圆的半焦距)
(Ⅰ)求椭圆C的方程;
(Ⅱ)若OA⊥OB(O为坐标原点),试探究点O到直线AB的距离是否为定值;若是定值,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知a、b、c都是正数,求证:
(I)$\frac{{b}^{2}}{a}$$+\frac{{c}^{2}}{b}$$+\frac{{a}^{2}}{c}$≥a十b+c;
(2)2($\frac{a+b}{2}$-$\sqrt{ab}$≤3($\frac{a+b+c}{3}$-$\root{3}{abc}$)

查看答案和解析>>

科目: 来源: 题型:解答题

17.设点P是圆x2+y2=4上的任一点,定点D的坐标为(8,0),若点M满足$\overrightarrow{PM}$=2$\overrightarrow{MD}$,当点P在圆上运动时,求点M的轨迹方程.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知点M(-3,0),N(3,0),B(2,0),动圆C与直线MN切于点B,过M,N与圆C相切的两直线交于点P,则P的轨迹方程为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x<-2)B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>2)C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1(x>0)D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1(x>0)

查看答案和解析>>

科目: 来源: 题型:解答题

15.设a,b,c为正数,且a2+b2+c2=1,求证:$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$+$\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+{b}^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某著名歌星在某地举办一次歌友会,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥$\frac{8}{5}x$,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不获得特等奖奖金.
(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;
(Ⅱ)设特等奖奖金为a元,小李是此次活动的顾客,求小李参加此次活动获益的期望;若该歌友会组织者在此次活动中获益的期望值是至少获得70000元,求a的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

13.求证:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

科目: 来源: 题型:解答题

12.设a,b,c是正实数,且a2+b2+c2+abc=4,证明:a+b+c≤3.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知a>0,b>0,且a+b=1.
(Ⅰ)求ab的最大值;
(Ⅱ)求证:$({a+\frac{1}{a}})({b+\frac{1}{b}})≥\frac{25}{4}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源是中国古代数学家祖冲之的圆周率.为庆祝该节日,某校举办的数学嘉年华活动中,设计了如下有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,分别获得5个、10个、20个学豆的奖励.游戏还规定,当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$,选手选择继续闯关的概率均为$\frac{1}{2}$,且各关之间闯关成功与否互不影响.
(Ⅰ)求选手甲第一关闯关成功且所得学豆为零的概率;
(Ⅱ)设该选手所得学豆总数为X,求X的分布列与数学期望.

查看答案和解析>>

同步练习册答案