相关习题
 0  229034  229042  229048  229052  229058  229060  229064  229070  229072  229078  229084  229088  229090  229094  229100  229102  229108  229112  229114  229118  229120  229124  229126  229128  229129  229130  229132  229133  229134  229136  229138  229142  229144  229148  229150  229154  229160  229162  229168  229172  229174  229178  229184  229190  229192  229198  229202  229204  229210  229214  229220  229228  266669 

科目: 来源: 题型:解答题

9.甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,假设每局比赛中,甲胜乙的概率为$\frac{1}{2}$,甲胜丙、乙胜丙的概率都为$\frac{2}{3}$,各局比赛的结果都相互独立,第1局甲当裁判.
(1)求第3局甲当裁判的概率;
(2)记前4局中乙当裁判的次数为X,求X的概率分布与数学期望.

查看答案和解析>>

科目: 来源: 题型:填空题

8.甲、乙两盒中各有除颜色外完全相同的2个红球和1个白球,现从两盒中随机各取一个球,则至少有一个红球的概率为$\frac{8}{9}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.甲、乙两队参加听歌猜歌名游戏,每队3人.随机播放一首歌曲,参赛者开始抢答,每人只有一次抢答机会(每人抢答机会均等),答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为$\frac{2}{3}$,乙队中3人答对的概率分别为$\frac{2}{3}$,$\frac{1}{3}$,$\frac{1}{2}$,且各人回答正确与否相互之间没有影响.
(Ⅰ)若比赛前随机从两队的6个选手中抽取两名选手进行示范,求抽到的两名选手在同一个队的概率;
(Ⅱ)用ξ表示甲队的总得分,求随机变量ξ的分布列和数学期望;
(Ⅲ)求两队得分之和大于4的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

6.从1、2、3、4、5中不重复的随机选取两个数,它们的和为奇数的概率为$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.甲、乙、丙三人参加微信群抢红包游戏,规则如下:每轮游戏发10个红包,每个红包金额在[1,5]产生.已知在每轮游戏中所产生的10个红包金额的频率分布直方图如图所示.
(Ⅰ)求a的值,并根据频率分布直方图,估计10个红包金额的中位数;
(Ⅱ)以频率分布直方图中的频率作为概率,若甲抢到来自[2,4)中3个红包,求其中一个红包来自[2,3),另2个红包来自[3,4)的概率.

查看答案和解析>>

科目: 来源: 题型:填空题

4.已知直线Ax+By+1=0.若A,B是从-3,-1,0,2,7这5个数中选取的不同的两个数,则直线的斜率小于0的概率为$\frac{1}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.某空间几何体的三视图如图所示,则该几何体的外接球表面积为9π.

查看答案和解析>>

科目: 来源: 题型:解答题

2.某电视台举行一个比赛类型的娱乐节目,A、B两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.
(1)根据茎叶图中的数据,求出A队第六位选手的成绩;
(2)主持人从A队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;
(3)主持人从A、B两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目: 来源: 题型:解答题

1.某数学兴趣小组为了烟瘴视觉和空间能力与性别是否有关,从兴趣小组中按分层抽样的方法抽取50名同学(男30人,女20人),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表所示:(单位:人)
题型
性别
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)从这50名同学中随机选取男生和女生各1人,求他们选做的题不同的概率;
(3)已知选择做几何题的8名女生有3人解答正确,从这8人中任意抽取3人对他们的答题情况进行研究,被抽取的女生中解答正确的人数记为X,求X的分布列及数学期望E(X).
附表及公式:
P(k2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}\sqrt{x},x≥0\\ \sqrt{-x},x<0\end{array}$,若f(a)+f(-1)=4,则a=(  )
A.±1B.9C.-9D.±9

查看答案和解析>>

同步练习册答案