相关习题
 0  229036  229044  229050  229054  229060  229062  229066  229072  229074  229080  229086  229090  229092  229096  229102  229104  229110  229114  229116  229120  229122  229126  229128  229130  229131  229132  229134  229135  229136  229138  229140  229144  229146  229150  229152  229156  229162  229164  229170  229174  229176  229180  229186  229192  229194  229200  229204  229206  229212  229216  229222  229230  266669 

科目: 来源: 题型:选择题

9.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是(  )
A.$\frac{2}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.第31届夏季奥林匹克运动会将于2016年8月5日-21日在巴西里约热内卢举行,下表是近五届奥运会中国代表团获得的金牌数的统计表(单位:枚)
届次第26届(亚特兰大)  第27届(悉尼)第28届(雅典)  第29届(北京)第30届(伦敦) 
 序号x 2 3 4 5
 金牌数y 1628  3251 38
(1)某同学利用地1、2、3、5四组数据建立金牌数$\stackrel{∧}{y}$关于序号x的回归方程为$\stackrel{∧}{y}$=5.0857x+14.514,据此回归方程预测第31届夏季奥运会中国队获得的金牌数(计算结果四舍五入,保留整数);
(2)试根据上述五组数据建立金牌数$\stackrel{∧}{y}$关于序号x的回归方程,并据求得的回归方程预测第31届夏季奥林匹克运动会中国队获得的金牌数(计算结果四舍五入,保留整数);
(3)利用(2)的结论填写下表(结算结果四舍五入,保留整数):
 届次 第26届(亚特兰大)  第27届(悉尼) 第28届(雅典)  第29届(北京) 第30届(伦敦)
 序号x 1 2 3 4 5
 金牌数y 16 28 32 51 38
 预测值$\stackrel{∧}{y}$     
 y-$\stackrel{∧}{y}$    
如果|y-$\stackrel{∧}{y}$|≤4,则称(2)中的方程对该届夏季奥林匹克运动会中国队获得金牌数是“特效”的,否则称为“非特效”的,现从上述五届奥运会中任取三届,记(2)中的回归直线方程为“特效”的届数为X,求X的分布列和数学期望.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{({x}_{i}-x)^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.某重点高中拟把学校打造成新型示范高中,为此规定了很多新的规章制度.新规章制度实施一段时间后,学校就新规章制度的认知程度随机抽取100名学生进行问卷调查,调查卷共有20个问题,每个问题5分,调查结束后,按成绩分成5组;第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],绘制成如图所示的频率分布直方图,已知甲,乙两人同在第3组,丙,丁两人分别在第4,5组,现在用分层抽样的方法在第3,4,5组共选取6人,进行强化培训.
(1)求第3,4,5组分别选取的人数;
(2)求这100人的平均得分(同一组数据用该区间的中点值作代表);
(3)若甲,乙,丙,丁四人都被选取进行强化培训,之后要从这6人随机选取2人再全面考查他们对新规章制度的认知程度,求甲,乙,丙,丁这四人至多有一人被选取的概率.

查看答案和解析>>

科目: 来源: 题型:选择题

6.在三棱锥D-ABC中,已知AB=BC=AD=$\sqrt{2}$,BD=AC=2,BC⊥AD,则三棱锥D-ABC外接球的表面积为(  )
A.B.12πC.6$\sqrt{3}$πD.6$\sqrt{2}$π

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知a,b,c∈R+,用综合法证明:
(1)(ab+a+b+1)(ab+ac+bc+c2)≥16abc;
(2)2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b)

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)点P在直线l:2x-4y+3=0上,过点P作圆C的切线,切点记为M,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

3.若直线ax+3y-4=0和圆x2+y2+4x-1=0相切,则a的值为(  )
A.6±2$\sqrt{35}$B.2±$\sqrt{35}$C.8±$\sqrt{35}$D.1±$\sqrt{35}$

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在五面体ABCDE中,AD⊥平面ABC,AD∥BE∥CF,△ABC为等边三角形,AB=2$\sqrt{3}$,BE=2,AD=3,CF=4,M为EF的中点.
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求直线CD与平面DEF所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设实数a1,a2,…,an满足a1+a2+…+an=0,且|a1|+|a2|+…+|an|≤1(n∈N*且n≥2),令bn=$\frac{a_n}{n}$(n∈N*).求证:|b1+b2+…+bn|≤$\frac{1}{2}-\frac{1}{2n}$(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

20.设x为实数,求证:(x2+x+1)2≤3(x4+x2+1)﹒

查看答案和解析>>

同步练习册答案