相关习题
 0  229057  229065  229071  229075  229081  229083  229087  229093  229095  229101  229107  229111  229113  229117  229123  229125  229131  229135  229137  229141  229143  229147  229149  229151  229152  229153  229155  229156  229157  229159  229161  229165  229167  229171  229173  229177  229183  229185  229191  229195  229197  229201  229207  229213  229215  229221  229225  229227  229233  229237  229243  229251  266669 

科目: 来源: 题型:填空题

5.如图所示,一隧道内设双行线公路,其截面由一个长方形和抛物线构成.为保证安全,要求行使车辆顶部(设为平顶)与隧道顶部在竖直方向上的高度之差至少要有0.5米.若行车道总宽度AB为6米,则车辆通过隧道的限制高度是3.2米(精确到0.1米)

查看答案和解析>>

科目: 来源: 题型:解答题

4.(1)求证:$已知:a>0,求证:\sqrt{a+5}-\sqrt{a+3}>\sqrt{a+6}-\sqrt{a+4}$
(2)已知:△ABC的三条边分别为a,b,c.求证:$\frac{a+b}{1+a+b}>\frac{c}{1+c}$.

查看答案和解析>>

科目: 来源: 题型:填空题

3.抛物线x2=-8y的焦点坐标为(0,-2).

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知a、b、c>1,且a+b+c=9.证明:$\sqrt{ab+bc+ca}$≤$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$.

查看答案和解析>>

科目: 来源: 题型:选择题

1.已知抛物线y2=8x,点Q是圆C:x2+y2+2x-8y+13=0上任意一点,记抛物线上任意一点到直线x=-2的距离为d,则|PQ|+d的最小值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知抛物线y2=2px(1<p<3)的焦点为F,抛物线上的点M(x0,1)到准线的距离为$\frac{5}{4}$
(1)求抛物线的标准方程;
(2)设直线MF与抛物线的另一交点为N,求$\frac{|MF|}{|NF|}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知圆C过点P(1,4),Q(3,2),且圆心C在直线x+y-3=0上.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l:kx-y-2k+1=0与圆C交于A,B两点,当|AB|最小时,求直线l的方程及|AB|的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知点F是抛物线x2=12y的焦点,点P是其上的动点,若$\overrightarrow{FM}=\overrightarrow{MP}$,则点M的轨迹方程是x2=6y-9.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知抛物线C:y2=8x的焦点为F,P是C上一点,Q(-2,y0)是x轴上方一点,若△PQF是等边三角形,则y0的值为(  )
A.$4\sqrt{3}$B.$3\sqrt{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知抛物线C:y2=2px(p>0)上的一点M的横坐标为3,焦点为F,且|MF|=4.直线l:y=2x-4与抛物线C交于A,B两点.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若直线l1∥l,且直线l1与抛物线C相切于点P,求直线l1的方程及△ABP的面积.

查看答案和解析>>

同步练习册答案