相关习题
 0  229063  229071  229077  229081  229087  229089  229093  229099  229101  229107  229113  229117  229119  229123  229129  229131  229137  229141  229143  229147  229149  229153  229155  229157  229158  229159  229161  229162  229163  229165  229167  229171  229173  229177  229179  229183  229189  229191  229197  229201  229203  229207  229213  229219  229221  229227  229231  229233  229239  229243  229249  229257  266669 

科目: 来源: 题型:解答题

5.已知x2+y2=a,m2+n2=b(a>0,b>0),求证:mx+ny≤$\frac{a+b}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知a,b∈R+,且a≥b
求证:b≤$\sqrt{\frac{2}{\frac{1}{{a}^{2}}+\frac{1}{{b}^{2}}}}$≤$\frac{2}{\frac{1}{a}+\frac{1}{b}}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}{+b}^{2}}{2}}$≤a.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知n∈N*,n≥2,求证:1+$\frac{1}{\sqrt{2}}$+$\frac{1}{\sqrt{3}}$+…+$\frac{1}{\sqrt{n}}$<2$\sqrt{n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

2.设a≥0,b≥0,且a≠b,求证:对于任意正数p都有[$\frac{a+pb}{p+1}$]2<$\frac{{a}^{2}+p{b}^{2}}{p+1}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知a,b,c,d∈(0,+∞),求证:$\frac{ad+bc}{bd}$+$\frac{bc+ad}{ac}$≥4.

查看答案和解析>>

科目: 来源: 题型:选择题

20.如图,直线l过抛物线y2=4x的交点F且分别交抛物线及其准线于A,B,C,若$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,则|AB|等于(  )
A.5B.6C.$4\sqrt{3}$D.8

查看答案和解析>>

科目: 来源: 题型:填空题

19.设M为直线x-y-1=0上的动点,过M作抛物线y=x2的切线,切点分别为A,B.
(1)求证:直线AB过定点.
(2)求△ABM面积S的最小值,并求此时取得最小值时M的坐标.

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知A、B为抛物线C:y2=4x上的不同的两点,且$\overrightarrow{FA}+4\overrightarrow{FB}=\overrightarrow 0$,则$|{\overrightarrow{AB}}|$=(  )
A.$\frac{25}{3}$B.$\frac{25}{8}$C.$\frac{100}{9}$D.$\frac{25}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与抛物线y2=4x的准线的一个交点的纵坐标为y0,若|y0|<2,则双曲线C的离心率的取值范围是(  )
A.(1,$\sqrt{3}$)B.(1,$\sqrt{5}$)C.($\sqrt{3}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

16.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即$\frac{n}{2}$);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则n的所有不同值的个数为(  )
A.4B.6C.32D.128

查看答案和解析>>

同步练习册答案