相关习题
 0  229088  229096  229102  229106  229112  229114  229118  229124  229126  229132  229138  229142  229144  229148  229154  229156  229162  229166  229168  229172  229174  229178  229180  229182  229183  229184  229186  229187  229188  229190  229192  229196  229198  229202  229204  229208  229214  229216  229222  229226  229228  229232  229238  229244  229246  229252  229256  229258  229264  229268  229274  229282  266669 

科目: 来源: 题型:填空题

9.若f(x+1)=2$\sqrt{f(x)}$,其中x∈N*,且f(1)=10,则f(x)的表达式是f(x)=4•($\frac{5}{2}$)${\;}^{{2}^{1-x}}$(x∈N*).

查看答案和解析>>

科目: 来源: 题型:填空题

8.在△ABC中,已知∠A=135°,∠B=15°,c=1,则a=$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设椭圆C1:$\frac{{x}^{2}}{2}$+y2=1的右焦点为F,动圆过点F且与直线x+1=0相切,M(3,0),设动圆圆心的轨迹为C2
(1)求C2的方程;
(2)过F任作一条斜率为k1的直线l,l与C2交于A,B两点,直线MA交C2于另一点C,直线MB交C2于另一点D,若直线CD的斜率为k2,问,$\frac{{k}_{1}}{{k}_{2}}$是否为定值?若是,求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=ax3+bx2-3x(a,b∈R),f′(x)为f(x)的导函数,若f′(x)是偶函数,且f′(1)=0.
(1)求f(x)的解析式;
(2)若对于区间[1,2]上任意两个自变量的值x1,x2,都有|g(x1)-g(x2)|≤c,其中g(x)=$\frac{1}{3}$f(x)-6lnx,求实数c的最小值;
(3)若过点M(2,m),能作曲线y=xf(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知x∈(0,2),关于x的不等式$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$恒成立,则实数k的取值范围为(  )
A.[0,e+1)B.[0,2e-1)C.[0,e)D.[0,e-1)

查看答案和解析>>

科目: 来源: 题型:解答题

4.在平面直角坐标系xoy中,以坐标原点O为极点,x轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C1的参数方程为$\left\{\begin{array}{l}x=acosφ\\ y=sinφ\end{array}\right.({φ为参数})$,曲线C2的极坐标方程为θ=$\frac{π}{4}({ρ≥0})$且C1与C2交点的横坐标为$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求曲线C1的普通方程;
(Ⅱ)设A,B为曲线C1与y轴的两个交点,M为曲线C1上不同于A,B的任意一点,若直线AM与MB分别与x轴交于P,Q两点,求证:|OP|•|OQ|为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.三棱锥P-ABC中,AB=BC=$\sqrt{2}$,AC=2,PC⊥平面ABC,PC=2,则该三棱锥的外接球表面积为8π.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系xOy中,设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{6}$,且过点($\sqrt{2}$,$\sqrt{5}$).
(1)求椭圆C的方程;
(2)设点P是椭圆C上横坐标大于2的一点,过点P作圆(x-1)2+y2=1的两条切线分别与y轴交于点A,B,试确定点P的坐标,使得△PAB的面积最大.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)过点(0,1),且长轴长是焦距的$\sqrt{2}$倍.过椭圆左焦点F的直线交椭圆C于A,B两点,O为坐标原点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线AB垂直于x轴,判断点O与以线段AB为直径的圆的位置关系,并说明理由;
(Ⅲ)若点O在以线段AB为直径的圆内,求直线AB的斜率k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧$\widehat{BD}$于点G,交弦BD于点E,F为线段BC的中点.
(Ⅰ)证明:平面OGF∥平面CAD;
(Ⅱ)若二面角C-AB-D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.

查看答案和解析>>

同步练习册答案