相关习题
 0  229089  229097  229103  229107  229113  229115  229119  229125  229127  229133  229139  229143  229145  229149  229155  229157  229163  229167  229169  229173  229175  229179  229181  229183  229184  229185  229187  229188  229189  229191  229193  229197  229199  229203  229205  229209  229215  229217  229223  229227  229229  229233  229239  229245  229247  229253  229257  229259  229265  229269  229275  229283  266669 

科目: 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{1-2|x-\frac{1}{2}|,0≤x≤1}\\{lo{g}_{2016}x,x>1}\end{array}\right.$若,a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是(  )
A.(1,2016)B.[1,2016]C.(2,2017)D.[2,2017]

查看答案和解析>>

科目: 来源: 题型:填空题

18.在数列{an}中,a1=1,3n-1an=3n-2an-1-2•3n-2+2(n≥2),Sn是数列{$\frac{{a}_{n}+1}{n}$}的前n项和,当不等式$\frac{({3}^{m}+1)({S}_{n}-m)}{{3}^{m}({S}_{n+1}-m)}<1$(m∈N*)恒成立时,m•n的所有可能取值为1,2,4.

查看答案和解析>>

科目: 来源: 题型:选择题

17.在钝角△ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=$\frac{{5\sqrt{3}}}{14}$,则△ABC的面积等于(  )
A.$\frac{{25\sqrt{3}}}{2}$B.$\frac{{15\sqrt{3}}}{2}$C.$\frac{{15\sqrt{3}}}{4}$D.$\frac{15}{4}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.在△ABC中,三边a,b,c所对应的角分别是A,B,C,已知a,b,c成等比数列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{{2\sqrt{3}}}{3}$,求角B的值;
(2)若△ABC外接圆的面积为4π,求△ABC面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的选修情况,如表:
 科目
学生人数
 A B C
 120 是 否 是
 60 否 否 是
 70 是 是 否
 50 是 是 是
 150 否 是 是
 50 是 否 否
(Ⅰ)试估计该校高三学生在A、B、C三门选修课中同时选修2门课的概率.
(Ⅱ)若该高三某学生已选修A,则该学生同时选修B、C中哪门的可能性大?

查看答案和解析>>

科目: 来源: 题型:选择题

14.已知命题p:?α∈R,sin(π-α)≠-sinα,命题q:?x∈[0,+∞),sinx>x,则下面结论正确的是(  )
A.¬p∨q是真命题B.p∨q是真命题C.¬p∧q是真命题D.q是真命题

查看答案和解析>>

科目: 来源: 题型:选择题

13.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.2B.$2\sqrt{3}$C.$\frac{{7\sqrt{6}}}{3}$D.$2\sqrt{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

12.在△ABC中,角A,B,C所对的边分别为a,b,c.若asinA=bsinB+(c-b)sinC,bc=4,则△ABC的面积为(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在△ABC中,点D在BC边上,∠CAD=$\frac{π}{4}$,AC=7,cos∠ADB=-$\frac{{\sqrt{2}}}{10}$.
(Ⅰ)求sinC的值;
(Ⅱ)若BD=10,求△ABD的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

10.在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=$\sqrt{3}$acosB,则角B的大小为60°.

查看答案和解析>>

同步练习册答案