相关习题
 0  229103  229111  229117  229121  229127  229129  229133  229139  229141  229147  229153  229157  229159  229163  229169  229171  229177  229181  229183  229187  229189  229193  229195  229197  229198  229199  229201  229202  229203  229205  229207  229211  229213  229217  229219  229223  229229  229231  229237  229241  229243  229247  229253  229259  229261  229267  229271  229273  229279  229283  229289  229297  266669 

科目: 来源: 题型:解答题

17.已知函数f(x)=lnx+$\frac{a}{x}$(a∈R).
(1)求函数的单调区间;
(2)若方程f(x)=2存在两个不同的实数解x1、x2,求证:x1+x2>2a.

查看答案和解析>>

科目: 来源: 题型:选择题

16.已知幂函数y=f(x),f′(x)为f(x)的导函数,f(x)在区间[0,1]上图象如图所示.对满足:0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x1)-f(x2)>x1-x2
②x2f(x1)>x1f(x2
③$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)
④[f′(x1)-f′(x2)](x1-x2)>0
其中一定正确结论的序号是(  )
A.①②③B.①③C.③④D.②③

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知函数f(x)=lnx-a(x-1)(a∈R)
(Ⅰ)若a=1,求证:当x>0时,f(x)≤0;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)求证:(1+$\frac{1}{2}$)(1+$\frac{1}{4}$)…(1+$\frac{1}{{2}^{n}}$)<e.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求三棱锥A-BCP的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,DE=3.
(Ⅰ)求证:AB∥平面CDE;
(Ⅱ)求证:平面ACE⊥平面CDE;
(Ⅲ)求三棱锥E-ACD的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如果一个正三棱锥的底面边长为6,侧棱长为$\sqrt{15}$,那么这个三棱锥的体积是(  )
A.$\frac{9}{2}$B.9C.$\frac{27}{2}$D.$\frac{{9\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:填空题

11.将边长为2的正方形ABCD沿对角线AC折起,使BD=2,则三棱锥D-ABC的体积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知正方体ABCD-A1B1C1D1的棱长为2,O是AC的中点,E是线段D1O上一点,且$\overrightarrow{{D_1}E}=λ\overrightarrow{EO}$.
(1)求证:D1O⊥AC;
(2)若DE⊥平面CD1O,求λ的值,并求三棱锥C-DEO的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图所示,在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,AD⊥AB,AB═$\sqrt{2}$,AD=2,BC=4,AA1=2,E,F分别是DD1,AA1的中点.
(I)证明:EF∥平面B1C1CB;
(11)求多面体A1B1F-D1C1E的体积.

查看答案和解析>>

科目: 来源: 题型:选择题

8.正三棱柱ABC-A1B1C1(侧棱垂直底面,底面为正三角形的棱柱)的底面边长为2,侧棱长为$\sqrt{3}$,则正三棱柱ABC-A1B1C1的体积为(  )
A.1B.$\frac{{\sqrt{3}}}{2}$C.$\frac{3}{2}$D.3

查看答案和解析>>

同步练习册答案