相关习题
 0  229104  229112  229118  229122  229128  229130  229134  229140  229142  229148  229154  229158  229160  229164  229170  229172  229178  229182  229184  229188  229190  229194  229196  229198  229199  229200  229202  229203  229204  229206  229208  229212  229214  229218  229220  229224  229230  229232  229238  229242  229244  229248  229254  229260  229262  229268  229272  229274  229280  229284  229290  229298  266669 

科目: 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,E为AD上一点,F为PC上一点,四边形BCDE为矩形,∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(1)求证:PE⊥平面ABCD;
(2)若二面角F-BE-C为30°,设$\overrightarrow{PF}$=λ$\overrightarrow{FC}$,求λ的值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.若直线l交抛物线C:y2=2px(p>0)于两不同点A,B,且|AB|=3p,则线段AB中点M到y轴距离的最小值为(  )
A.$\frac{p}{2}$B.pC.$\frac{3p}{2}$D.2p

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知抛物线C:x2=8y,过点M(0,t)(t<0)可作抛物线C的两条切线,切点分别为A,B,若直线AB恰好过抛物线C的焦点,则△MAB的面积为(  )
A.2B.3C.6D.16

查看答案和解析>>

科目: 来源: 题型:解答题

4.设抛物线C:y2=2px(p>0)的焦点为F,点T(t,0)(t>0),且过点F的直线,交C于A,B.
(I)当t=2时,若过T的直线交抛物线C于两点,且两交点的纵坐标乘积为-4,求焦点F的坐标;
(Ⅱ)如图,直线AT、BT分别交抛物线C于点P、Q,连接PQ交x轴于点M,证明:|OF|,|OT|,|OM|成等比数列.

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C相交于A、B两点,若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,则|AB|=(  )
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C相交于A,B两点,若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,则|AB|=(  )
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图所示,正方体ABCD-A1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点,过点A、P、Q的平面截正方体所得的截面即为S.
①当CQ=2时,被S截得的较小几何体为棱台;
②当3<CQ<4时,S为五边形;
③当CQ=3时,S与C1D1的交点R满足D1R=1;
④当CQ=4时,S截正方体两部分的体积之比为1:1.
则以上命题正确的是①②④  (写出所有正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知抛物线C:y2=4x.直线l:y=k(x-8)与抛物线C交于A,B(A在B的下方)两点,与x
轴交于点P.
(1)若点P恰为弦AB的三等分点,试求实数k的值.
(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.已知双曲线的一个焦点与抛物线y2=20x的焦点重合,其一条渐近线的斜率等于$\frac{3}{4}$,则该双曲线的标准方程为(  )
A.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1D.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,四面体ABCD中,O、E分别 BD、BC的中点,AB=AD=$\sqrt{2}$,CA=CB=CD=BD=2.
(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值大小;
(3)求点E到平面ACD的距离.

查看答案和解析>>

同步练习册答案