相关习题
 0  229108  229116  229122  229126  229132  229134  229138  229144  229146  229152  229158  229162  229164  229168  229174  229176  229182  229186  229188  229192  229194  229198  229200  229202  229203  229204  229206  229207  229208  229210  229212  229216  229218  229222  229224  229228  229234  229236  229242  229246  229248  229252  229258  229264  229266  229272  229276  229278  229284  229288  229294  229302  266669 

科目: 来源: 题型:选择题

7.当x∈[-2,-1],不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是(  )
A.[-5,-3]B.(-∞,-$\frac{9}{8}$]C.(-∞,-2]D.[-4,-3]

查看答案和解析>>

科目: 来源: 题型:解答题

6.为了解某班学生喜欢打篮球是否与性别有关,对本班50人进行了问卷调查,得到如表的列联表:
 喜欢打篮球 不喜欢打篮球 合计
 男生  5 
 女生 10  
 合计  50
已知在全部50人中随机抽取1人抽到喜欢打篮球的学生的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜欢打篮球与性别有关?请说明你的理由.
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k1 0.10 0.05 0.025 0.010 0.005 0.001
 k1 2.706 3.841 5.024 6.6335 7.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆M的离心率为$\frac{1}{2}$,椭圆上异于长轴顶点的任意点A与左右两焦点F1,F2构成的三角形中面积的最大值为$\sqrt{3}$.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)若A与C是椭圆M上关于x轴对称的两点,连接CF2与椭圆的另一交点为B,求证:直线AB与x轴交于定点.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$(x+$\frac{1}{x}$),g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$).
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知点A,B的坐标分别为(-2,0),(2,0).直线AP,BP相交于点P,且它们的斜率之积是-$\frac{1}{4}$.记点P的轨迹为Г.
(Ⅰ)求Г的方程;
(Ⅱ)已知直线AP,BP分别交直线l:x=4于点M,N,轨迹Г在点P处的切线与线段MN交于点Q,求$\frac{|MQ|}{|NQ|}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.定义在R上的函数f(x)满足f(x+2)=f(x)-2,当x∈(0,2]时,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-6,x∈(0,1]}\\{-{2}^{x-1}-5,x∈(1,2]}\end{array}\right.$,若x∈(-6,-4]时,关于x的方程af(x)-a2+2=0(a>0)有解,则实数a的取值范围是0<a≤1.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,短轴长为2.
(1)求椭圆E的方程;
(2)过圆C:x2+y2=r2(0<r<b)上的任意一点作圆C的切线l与椭圆E交于A,B两点,都有OA⊥OB(O为坐标原点),求r的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点到直线x-y+2$\sqrt{2}$=0的距离为3,且过点(-1,-$\frac{\sqrt{6}}{2}$).
(1)求E的方程;
(2)设椭圆E的左顶点是A,直线l:x-my-t=0与椭圆E相交于不同的两点M,N(M,N均与A不重合),且以MN为直径的圆过点A,试判断直线l是否过定点,若过定点,求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足$|{\overrightarrow{{F_{1}}Q}}$|=2a.点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足$\overrightarrow{PT}•\overrightarrow{T{F_2}}$=0,$|{\overrightarrow{T{F_2}}}$|≠0.
(1)当a=5,b=3时,用点P的横坐标x表示$|{\overrightarrow{{F_1}P}}$|;
(2)求点T的轨迹C的方程;
(3)在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=b2?若存在,求出∠F1MF2的正切值;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设函数f(x)=|x+a|-|x-a|.
(Ⅰ)当a=2时,解不等式f(x)≥2;
(Ⅱ)若y>0,证明:f(x)≤a2y+$\frac{1}{y}$.

查看答案和解析>>

同步练习册答案